
DyVE: Reactive Software Validation

Through A Dynamic Validation Tool

Christophe Arlen�

Thomson Airsys
Multidomain Control Centers

7, rue des Mathurins

F-92223 Bagneux Cedex

FRANCE

+33 1 40 84 18 33

arlen@sdc.thomson.fr

Bruno Berstel��

Ilog S.A.
9, rue de Verdun

B.P. 85

F-94253 Gentilly Cedex

FRANCE

+33 1 49 08 35 00

berstel@ilog.fr

April 24, 1996

Abstract

In the context of its activities in Air Tra�c Control, Thomson Airsys developed DyVE, a workshop

for developing environments of validation through simulation. This workshop uses the language ILOG

Talk to integrate C++ components and to make those components dynamic|the key to the resulting

validation. This article describes the DyVE workshop as well as this dynamic quality, the decisive element

in the validation process.

1 Introduction

DyVE (Dynamic Validation Environment) [8] is a

workshop for developing validation environments for

systems through simulation. The workshop itself was

developed between 1994 and 1995 by the NAOS team

at Thomson Airsys. The project NAOS (New Air

Tra�c Management Open Systems) operates within

the Technical and Scienti�c Direction of Thomson

Airsys; its purpose is to study new computer tech-

nologies and their applications to future Air Tra�c

Control systems.

The studies and demonstrations coming out of

the NAOS project required the development of a se-

ries of simulators for air control functions (such func-

tions as managing ight plans, synthesizing radar

paths, coordinating control centers, controlling air-

craft, etc.). Those simulators were needed within

demonstrations where the goal was to validate the

application of a set of techniques (such techniques

as C++, rule-based programming, distributed pro-

�DyVE Product Manager

��ILOG Talk Software Engineer, former member of DyVE

team

gramming, shared objects, etc.) to Air Tra�c Con-

trol functions.

2 Validation through simula-

tion

The need to validate a software system with respect

to its speci�cations arises at various stages during its

development. Systems-engineering techniques and

tools (such as RDD 100 or BONES) assume an a

priori validation of the software system. Tests are,

however, a posteriori validation; this is the kind of

validation addressed by DyVE.

Validation tests occur regularly and frequently,

whether tests of a simple function, tests of a mod-

ule, tests of an operationally signi�cant functionality,

right up to integration tests where interactions be-

tween elements of the software system are veri�ed.

Although commonly recognized as unavoidable, tests

have a cost|often underestimated. We shall exam-

ine here the reasons for this cost and the way a tool

for reactive validation such as DyVE can reduce this

cost, thus bringing back frequent tests into the de-

velopment cycle.

1

At each level, a posteriori tests validate the op-

erability of a software element with its adjacent el-

ements. For that purpose, those tests require the

presence of those adjacent elements and preferably

in their validated state. In many cases, testers have

to resort to solutions from simulated functions adja-

cent to the element to validate. They will do so to

work around the fact that those adjacent elements

are not yet available or still too rigid. One may de-

vote considerable e�ort to those simulation solutions;

the bene�ts one expects to get from them justify it;

but these e�orts generally do not go as far as pro-

ducing highly re�ned nor greatly varied simulations.

In contrast, using a framework of validation

through simulation lets us amortize the validation

e�ort made at each step in development. In fact,

that is the way the NAOS project works: we imple-

mented a test-bed that makes it possible to synthe-

size a simulator quite rapidly to validate a software

element incrementally.

Getting results is the primary aim of such a test-

bed: producing simulations useful in the validation is

the point, afterall, even more important than achiev-

ing irrefutable realism. The usefulness of the test-

bed will also derive equally from the set of valida-

tion services independent of the simulation model.

We detail these services later in this article, but here

we mention, as one example, the service of control-

ling time (breaks, speed, etc.).

Moreover, this test-bed will be useful only if the

e�ort required to adapt it stays focused on the ap-

plication realm of the software system that needs to

be validated. Other considerations, such as the in-

terface among simulated elements themselves or be-

tween them and the one to validate, must exploit,

indeed capitalize on, the expertise of the framework,

to relieve the users from that concern. Likewise, de-

signing the model for the functions adjacent to the

element to validate has to be made easier by reuse

of existing e�orts and/or by taking advantage of a

rapid development environment.

Finally, using a simulation environment has to

be simple in order to stay competitive with the costs

allowed for validation phases. It must put a tool

for preparing scenarios at the disposal of the user,

and it also has to provide controlled environment for

supervising how the simulation proceeds.

Those were the constraints that DyVE had to re-

spond to by trying to achieve modularity and gener-

icity in the services that it provided and by intro-

ducing maximally dynamic qualities at every level.

Adopting object orientation and using a dynamic ob-

ject language, like ILOG Talk, in this task made

the decisive di�erence.

3 The tools used

DyVE is written in C++ and in ILOG Talk.

ILOG Talk [5, 6] is a Lisp dialect. As major

Lisps (esp. Common Lisp), it comes with a com-

piler, an interpreter, an automatic memory manage-

ment (GC), a meta-object protocol (MOP), high-

level libraries. Its speci�cities as a Lisp system

(esp. in contrast with Common Lisp) is that it

is modular, oriented toward application delivery,

Posix compliant, small, that it compiles to C, has a

straightforward C++ interface mechanism, is shared

library based, and that its runtime libraries are free.

Talk was initially used in DyVE as the language

for writing scenarios. Then bene�ts were taken from

its high-level libraries and development environment

[3], and now the tool layer in DyVE is written in

Talk. Python [1] was taken into consideration as

a scripting language; ILOG Talk was prefered be-

cause of its robustness as a programming language

and its ability to automatically generate interfaces

(known as bindings) to C++ libraries [2].

The other ILOG products used around DyVE

are ILOG Views and ILOG Rules. ILOG Views

[7] is a C++ Graphical User Interface running on

Unix and Windows platforms. As a C++ library, it

has a Talk binding, thus enabling dynamic graph-

ical interface programming. ILOG Rules [4] is a

C++ library and a preprocessor used to write ex-

pert systems integrated in C++ programs.

4 The World According to

DyVE

Each software element to validate is integrated into

a software system which is in turn conceptually di-

vided into entities. Each of those entities serves as

the model for one operational functionality. The

closer these functionalities are to the element to vali-

date, the tighter will be the correspondance between

the functionalities of the model and reality.

In the validation simulator, each of the function-

alities is implemented by an agent, serving as the

model of the operational characteristics (the expert

layer) and collaborating with other agents, the ele-

ment to validate, and the user of the simulator. An

agent exploits a range of services (the tool layer).

There is a clean and clear separation between these

two layers. In fact, the tool layer must be indepen-

dent of the operational realm of the simulator. The

2

expert layer focuses on the model of the functionality

embodied in a given agent, providing the expertise of

the domain, whereas the tool layer has to supply the

power and exibility demanded by validation tools.

Globally, the software system includes the pro-

cess or processes implementing the element to val-

idate plus the agents that simulate the connected

functionalities. These agents are distributed among

one or more processes, and the processes, in turn,

may be distributed among one or more machines in

such a manner that the tool layer in no way con-

strains this distribution. Furthermore, this distribu-

tion must be transparent to the expert layer. Indeed,

the way these parts are distributed is entirely up to

the user, possibly dictated by the element to validate

or by the middleware in use.

4.1 Expert layer: a simple example

DyVE has been used or is in use in several projects

at Thomson Airsys, all of them related to Air Tra�c

Control. We present here (see �g. 1) a simpli�ed ex-

ample that gathers the typical aspects of a software

system using DyVE to validate one of its elements.

The element to validate is an air tra�c controller

working position (CWP); it is connected to other

CWPs, to an air tra�c generator (ATG) from which

it receives radar echoes, and to a ight plan proces-

sor (FPP) with which it exchanges ight plan infor-

mation. The whole is the software system and would

more realistically include models (agents) of adjacent

control centers, several types of controller positions,

and other processor connected to the CWPs, such

as a meteo information provider, a conict detection

system, and so forth.

In the project that inspired this example, the air

tra�c generator was written in C++, and was di-

vided into four agents; the ight plan processor was

written in C++ and included expert systems gener-

ated by ILOG Rules; the CWPs adjacent to the

position to validate were written part in C++ and

part in ILOG Talk.

Scenarios are generated o�-line by the means of

a scenario preparation utility. They are read by the

agents at the beginning of each validation session.

During the session, the simulator and the agents are

controlled by the managers operated by the valida-

tor. As we shall see, these managers enable the val-

idator to dynamically modify or extend the scenario

and the behaviour of the agents. The production of

the agents (traces ranging from standard output) is

used by the validator to test the element to validate.

Scenario

Preparation

Managers

Validator

Traces

CWP

CWP

ATG FPP

CWP

MMI

Scenario

Figure 1: A simpli�ed example of the use of DyVE.

TRACE TIMER MESSAGE ...

CLOCK ENGINE SCENARIO

SESSIONSHELL

CWP #1

FPP Expert Layer

Tool Layer

Figure 2: A process containing agents.

4.2 Tool layer: services

The tool layer (see �g. 2) o�ers a set of services to

expert layers for modeling their functions and for

integrating them into the test-bed. These services

are implemented as distinct libraries, so each pro-

cess loads only the services used by the agents within

it. Moreover, the object oriented design of these li-

braries makes it easier to extend the tool layer simply

by writing new services.

The shell and session services. These services|

shell and session|are the basis of the tool layer.

They implement the division of the software system:

i) between simulated elements (agents) and exter-

nal elements (real-world or those to validate); ii)

also through the distribution of these elements across

processes and machines. Additionally, they guaran-

tee that the libraries that implement the agents are

loaded appropriately for the architecture chosen for

the current validation session and thus insure the

services used by these agents are loaded, too.

3

The scenario service. The scenario service en-

ables the agents to load working data they might

need (as explained in Section 5). It also guarantees

them that initializations and resets will be executed

appropriately at the beginning and end of the sce-

nario.

The engine service. The expert layer provides the

model of operational functionalities for agents on the

basis of a reactive behavior model. What each agent

does is designed as reactions to stimuli. These stim-

uli can be perceived directly by the expert layer of

the agent; such a stimulus might be, for example,

the action of a user in the possible human-machine

interface of the agent. The stimuli can also reach

an agent through the tool layer; they would thus be

delivered in the universal form of events, such as the

arrival of a message, the expiration of a timer, and

so forth.

When an event occurs for an agent, the event is

submitted to the rule base for that agent. These

rules select a set of actions to carry out, that is, the

treatments for the agent to launch. Managing the

rule base of an agent, submitting events to the rule

base, and launching the treatments by agents are all

activities of the engine service.

The message service. Themessage service is used

by agents to exchange operational messages. It of-

fers aliasing for addresses thus allowing agents to

be reused from the architecture of one simulator to

another without any change in their code, indepen-

dently of their real identity and of the physical loca-

tion of their interlocutors. When this service receives

a message, it synthesizes an event (\arrival of a mes-

sage") which is then put into the hands of the engine

service to be handled appropriately.

The clock and timer services. The clock service

maintains the simulated time, an a�ne function of

the real time. It can be regulated by the clock man-

ager. (See clock manager in Section 4.3.) It can also

provide agents with the current time.

The timer service is used by agents to schedule

future actions. The engine service introduces rule

bases; as a consequence of the use of these bases the

timers can be exploited in a very natural way: the

agent adds a rule to its rule base to specify the time

at which the rule is \true"; at that speci�ed time,

the engine service starts the action scheduled that

way.

The trace service. The trace service enables the

agents to qualify the messages they output, in order

for the validator to control them through the trace

manager, described below. This service relieves the

agent from the need to know what level a detail in

the output will be of interest at runtime|a usually

impossible guess. It is important that the designer of

the agent can add as much traces as he or she wants,

since the traces are the basic echo of the behavior of

the software element to validate.

4.3 Validation services

Up to this point, we have described the services of-

fered to designers of simulators to implement the ex-

pert layer. DyVE also provides services to the user

of a simulator to help with validation. These ser-

vices include a graphic tool for preparing scenarios;

this graphic tool makes it possible to build scenarios

in terms of the validation objectives. Other services

include a group of managers, tools for the validator

to control the simulation in order to get validation

results or even to re�ne such results.

Session manager. The session manager lets the

user �rst display the possibilities and then choose the

architecture of the simulator for a validation session.

Architecture in this context involves the kind and

number of agents.

Scenario manager. During a validation session,

the user can work with several scenarios in succes-

sion. The scenario manager lets a user choose a

scenario, start it, and then end it.

Clock manager. A user exploits the clock man-

ager to stop or to restart simulated time. The clock

manager also determines the speed at which simu-

lated time elapses. Additionally, it can set jumps,

either jumps at regular intervals, jumps to a given

time, or jumps to the expiration time of the next

timer.

Trace manager. Agents emit trace output de-

scribing the progress of their work. This output can

be controlled by the validator by the means of the

trace manager. The control works on an agent ba-

sis and relates to the medium (�le, standard output,

terminal window. . .), the language, etc. used for the

output, as well as the criteria of whether to emit the

output or not.

4

Command manager. In Section 6, we will show

how its dynamic aspect makes DyVE easier to con-

trol. Both actions �red by managers and other ac-

tions with no related manager (for the time being)

are accessible through commands from the command

manager. The command manager is nothing more

than a conventional command line, but since it is in

fact a manager, the overall homogenity is greater.

Furthermore, the user can choose process by process

whether or not to include the services of this man-

ager, just as for other managers.

5 The scenario

DyVE uses scenarios, familiar from the simulation

realm, to validate a software element. A scenario

de�nes a situation in which we want to study the

behavior of the element to validate, or the behavior

of the entire software system. The scenario provides

the data and stimuli that would come from the real

environment in a non-simulated system; these data

and stimuli feed models. This is the way the domain

expert, the designer of the models that make up the

simulator, sees things.

The programmer who designs the tool layer has

a symmetric view. Pushed to its extreme, this sym-

metric way of looking at things assumes that DyVE

provides no more than the test-bed, and that every-

thing else (that is, the set of expert layers of the

agents) is just scenario.

The person responsible for validating the system

will have the outlook of a user of the validation envi-

ronment based on DyVE: the simulator, tool layer

and expert layer united, are all there to provide

greater ease at work. This person expresses him-

self or herself through the scenario. He or she wants

to get the most out of it in order to do useful work.

Accordingly, a scenario is not only a source of data

for agents; it must also be the place where parame-

ters for these agents are set. And while we are at it,

why not set parameters here for the services of the

tool layer so that we can submit the element to val-

idate to more varied or even unexpected conditions.

By using a scenario to set parameters for agents, we

avoid making the validator oblige the development

team to intervene again in the agents' code|a prac-

tice that would greatly prolong the response time

and overburden the models. However, the fact of

setting parameters for agents in a scenario should

not restrict the validator to setting numeric values;

he or she has to be able to set parameters for the

models that specify behavior.

At assessment time, everyone agrees to give the

scenario a central place in the simulator. Likewise,

for formulating scenarios, everyone demands an open

language, capable of expressing complicated ideas

and even behavior. In practice, a scenario language

should be independent of the operational domain of

each simulator, since we decline to invent a new lan-

guage for every system we have to validate.

An interpreter corresponds to the language of sce-

narios, an interpreter located in the tool layer. Yet it

should be possible in the scenario to manipulate data

structures introduced by agents in order to specify

there the behavior used by these agents. For that

reason, the interpreter must o�er a language con-

nection with the agents.

With respect to the implementation of scenario

services, the DyVE team concluded that it was not

practical for them to design such a language and then

implement the interpreter for it. Clearly, it would

be more economical to choose an existing language

already on the market to get better results than one

could expect working alone. After a careful study of

current o�erings, the DyVE team chose the language

ILOG Talk. In the next section, we will cover the

advantages of this choice, but for now, we should

mention these points:

� The robustness, completeness, and power of

the language insures a good basis for future

development. In e�ect, we need to guarantee

that the language we choose for scenarios will

not impede our implementation of the central

role of scenarios.

� The strong and easy connection with C++

makes it possible to integrate the models and

to reuse data structures and modules that we

have already developed, and there was no ques-

tion of our throwing them away!

� There is also the possibility of using ILOG

Talk in the tasks of rapidly prototyping

agents, as well as in e�ciently programming

the tool layer. These observations naturally

lead to using ILOG Talk for more that we

initially targeted it.

� Finally, ILOG Talk can be interpreted

and/or compiled into the machine native for-

mat (.o �les); this o�ers portability, exibility

and e�ciency. Likewise, its binding with the

GUI tool ILOG Views is advantageous.

5

6 What does a dynamic object

language o�er?

6.1 Implementing the scenario

ILOG Talk is the language in which the scenario

is expressed. The phrases in the scenario that pro-

vide data useful to the simulator are consequently

Talk expressions; those expressions lead �nally to

function calls. These functions, called in Talk in

the scenario, are implemented in the agents. There

they can be in Talk or in C++, thanks to the bind-

ing mechanismo�ered by ILOG Talk. This binding

mechanism automatically furnishes a Talk interface

for a set of C++ classes and methods. Thus by sys-

tematically binding the C++ code of the agents, we

can manipulate all the data structures introduced

by the agents, and we can do so from the scenario;

we can also have the agents implement the functions

called in the scenario, and do so in C++ without

imposing any constraints on the expert layer.

Since we use Talk to formulate the scenario, we

avoid writing a parser, an interpreter, and so forth,

for the scenario. Nevertheless, the scenario remains

independent of the domain and open to new agents.

It leaves great latitude to the validator about the

data he or she might introduce in the scenario. Be-

cause there is C++ binding in Talk, and since we

use it, this latitude does not impose any constraints

on the designer of the models; he or she can reuse

existing C++ code, even opening it to use from a

scenario.

In short, the scenario itself stays on the expert

level although all the mechanisms around it are on

the tool level. Thus we have been able to separate

those worlds, so they o�er the maximum power for

our work.

6.2 Implementing commands

A user of the simulator operates on agents and ex-

ploits the services of the tool layer through com-

mands. Here again, we use ILOG Talk, this time

to formulate the commands. A command is a Talk

expression, resulting �nally in function calls.

The functions called in Talk by commands could

be implemented inTalk, for example if the agents or

services to which they are destined are also written

in Talk. By the same C++ binding mechanism|

the one we use for the scenario|commands could

equally well be written in C++, particularly if their

destinations are already written in C++.

Just as for the phrases of the scenario, for com-

mands, we take advantage of the complete open-

ness of agents, including the fact that the same data

structures they manipulate can be handled in com-

mands as well. Symmetrically, the command mecha-

nism will be independent of the operational domain.

In consequence, we can take into account new func-

tions or even new domains without extra cost.

The user generates commands, directed to agents

or services, by means of the Talk command line

embodied in the command manager or by means

of graphic interfaces; those graphic interfaces in-

volve other managers or windows incorporated with

agents. Since the ILOG Talk development environ-

ment (where the command manager takes over the

command line) is integrated with Emacs, in DyVE,

we thus have a validation tool integrated with the

development environment|a considerable factor in

productivity.

6.3 Homogeneity among the inter-

preters

As we mentioned, scenarios and commands share the

same language: ILOG Talk. Since their language is

the same, commands can be used within scenarios.

Likewise, fragments of scenarios can appear in the

command line. This commonality saves work for ev-

eryone: the tool layer will have only one interpreter

to take into account; the functions of the agent will

serve as scenario phrases and commands.

Inserting commands into the scenario becomes

truly interesting when we use the form at, intro-

duced by the timer service. From a scenario, it is

thus possible to program a command for a given sim-

ulated time. Since it is feasible to send phrases of the

scenario from the command line, and thus during a

simulation, it is possible to modify or enrich the sce-

nario dynamically|a very interesting possibility.

Since we chose for commands and scenarios to

call functions implemented in the agents, it becomes

possible to consider commands and scenario phrases

as entry points in agents. In that way, we break

through the customary rigidity of a scenario. We

gain considerable exibility and expressive power

needed in a command language.

6.4 Dynamic actions of the validator

The validator makes use of these entry points to get

into the exact operational situation of interest. To

do so, he or she could launch treatments in agents

by command to manipulate their internal data, since

the validator uses the same data structures.

6

For example, in a software system serving as the

model for an Air Tra�c Control center, the scenario

will certainly include a list of declared ight plans,

which in turn lead to radar echoes, and so forth. To

mention a ight plan in a scenario, we use Talk to

call to a function (whether Talk or C++) named,

for example, add-flight with arguments de�ning

the characteristics of the ight by means of struc-

tures handled by the agents. As the scenario un-

winds, then from the DyVE command line, we could

create all the objects de�ning a new ight plan and

call the function add-flight for them. In that way,

we add a ight plan to the system, one not initially

foreseen in the scenario.

This simple example is already in use and much

appreciated by validators of Air Tra�c Control sys-

tems since it lets them create geographically well

placed ights on demand to validate quite precisely

the behavior of a software element under target con-

ditions. This is only one illustration of the greater

productivity that the use of a dynamic object lan-

guage, like ILOG Talk, confers on a tool like DyVE.

The validator could also build and send messages,

either to move an agent along within its own logic, or

to evaluate the behavior of the element to validate

when it is confronted with a message unrelated to

the system logic.

Commands even o�er the validator access to ser-

vices. The validator can thus, for example, simulate

breakdowns by stopping the sending of messages or

by corrupting them on the y. The validator could

put in tools to spy on the data being exchanged,

or command tracing services. In addition, since the

command manager is also the ILOG Talk com-

mand line, the validator may use all the debugging

tools o�ered by the ILOG Talk development envi-

ronment.

6.5 Substitution: how it works

Since the DyVE command line is integrated with

Emacs and the development environment, we can

actually go further than a simple function call. While

a scenario is being played out, the validator can write

a short program, for example to insert it at the recep-

tion of each message. Obviously, instead of typing

it, the validator can load and use a module already

written with (why not?) a graphic interface, since

ILOG Talk binds to ILOG Views.

Since we use ILOG Talk, a dynamic language,

in many parts of the tool layer, even in certain agents

and since the engine service, with its rule bases, in-

troduces a form of late binding in the agents, even

in those written in C++, the validator could also re-

de�ne functions from the DyVE command line and

thus dynamically inuence the behavior of services

and agents.

Moreover, since the scenario is expressed in

Talk, too, these rede�nitions could even take place

in the scenario, either from loading or deferred to a

later time by means of the form at.

This possibility of rede�ning parts of the code to

inuence the behavior of agents and services is not

just a gimmick. On the contrary, it involves regu-

lation through substitution, letting the validator get

just the results he or she wants while greatly reduc-

ing the size of the models making up the simulator.

class X {

 ...

 PARAM in {M1, M2,...,Mk};

 method M();

 ...

};

method X::M() {

 case PARAM of

 default:

 M1:

 M2:

 ...

 Mk:

 end

}

general code

code #1

code #2

code #k

Agent X

...

X: PARAM = M2

...

Scenario

Figure 3: Controlling an agent through parameters.

class X {

 ...

 method M();

 ..

};

method X::M() {

}

 general code

ILOG Talk

interpreter

method X::M() {

}

 code #2

...

...

Scenario

Agent X

Figure 4: Controlling an agent through substitution.

Figures 3 and 4 highlight the di�erences be-

tween regulation through substitution and conven-

tional control through parameters. In the illustra-

tion, the agent X is implemented by the class X.

7

Among other things, it has a method M that can be

regulated by the validator.

With conventional control through parameters,

the designer of the model of X must foresee the var-

ious regulations that the validatormight want to use,

then enumerate them all in a parameter, PARAM. The

body of the method X::M will reect the various pos-

sible values of PARAM. The scenario will consist of

assigning the code of the variation chosen in the pa-

rameter; likewise, with the command. This way of

doing things begins to be burdensome if the valida-

tor ever wants to try a new variation. He or she has

to agree precisely with the designer of X, then wait

for the implementation; all the while the designer of

X is trying to insure coherence and consistency with

the rest of the model in all its possible variations.

In contrast, with regulation through substitu-

tion, the model of X does not introduce PARAM. The

body of X::M contains only the general case of the

method. If the validator wants to use a variation of

the method M, he or she will substitute the code of

this variation for the original code in the scenario or

command line. In this way, the code for the model

X remains simple, and it is on the basis of each exe-

cution that the behavior is rede�ned by the validator

him- or herself expressing precisely what he or she

wants to see. Of course, this way of doing things does

not preclude help from the designer of the model for

X.

6.6 Towards validating integration

The services of the tool layer and the expert layers

in the agents are implemented as libraries. The ar-

chitecture (that is, the kind and number of agents)

of a simulator is not implemented by a main pro-

gram, but rather it is de�ned in a section of the

scenario. This convention makes DyVE independent

of the software system that it simulates or validates.

Thus the basic code in DyVE is quite short since

it is limited to the shell and session services. At

start-up time, DyVE reads the scenario about the

agents and managers that make up each of the pro-

cesses in the simulator; then it loads the relevant li-

braries to implement those agents and managers into

its own process. The tool layer services used by the

agents and managers (and only those services) are

loaded as side-e�ects by means of the dependences

established by the ILOG Talk development envi-

ronment at compile time.

The mechanism of dynamic loading works equally

well with libraries that result from Talk code or

from C++, or even from a mix of the two, because of

development tools put in place by DyVE. Addition-

ally, libraries of utilities can also be loaded during

an exercise, for example, such a utility as a window

module for capturing messages. It will automati-

cally insure loading the binding for ILOG Views, if

needed.

By putting the de�nition of the architecture of

the simulator into the scenario (the place where the

validator can express preferences) we leave the choice

of agents to use for a given validation session up to

the validator. The validator also chooses how many

agents, how to distribute them among processes and

among availablemachines. We also give the validator

the choice among various existing implementations

for each agent, corresponding to various versions, to

various degrees of realism or automation, from wholy

manual (across various graphic interfaces) up to to-

tally automated (through parameters in the scenario

to choose various behaviors).

By exploiting these choices about the architec-

ture to the limit, we can use the simulator to produce

integration tests by including prototyped versions or

�nal versions of the same agent in successive simula-

tion sessions in the course of validation.

7 Conclusion

In this article, we have described the DyVE

workshop for building environments for validation

through simulation. This workshop embodies li-

braries of services at the tool level along with foun-

dation libraries for Air Tra�c Control systems. It

also o�ers a validation methodology, which consists

of building a simulator on a general model, then

varying the model by substituting code.

To make the validation steps more e�cient,

DyVE introduces dynamic qualities at multiple lev-

els: at the level of the software system as a whole,

by allowing the architecture to be composed from

the scenario; at the level of the code, by using code

substitution to express variations needed during val-

idation; at the level of model execution, by putting

a command line at the disposal of the validator|a

command line with the expressive power of the sce-

nario and capable of controlling agents as well as

services.

Dynamic qualities have been integrated through

our choice of the dynamic object language, ILOG

Talk. DyVE takes its interpreter for its command

line and for its scenarios from Talk. Since ILOG

Talk can absorb C++ libraries, it o�ers a dynami-

cally usable interface to them so that new users can

reuse their C++ code. Dynamic loading of libraries,

8

along with ILOG Talk development tools, make

DyVE modular and exible.

In that way, we have achieved a reactive

validation tool integrated with the development

environment|a facility that reduces the amount of

time invested in validation, all the while making val-

idation more useful.

References

[1] Guido van Rossum and Jelke de Boer. Interac-

tively testing remote servers using the Python

programming language. CWI Quaterly, 4(4):283{

303, December 1991.

[2] Harley E. Davis, Pierre Parquier, and Nitsan

S�eniak. Sweet Harmony: The Talk/C++ Con-

nection. In ACM Conference on Lisp and

Functional Programming. ACM SIGPLAN, ACM

Press, 1994.

[3] Harley E. Davis, Pierre Parquier, and Nitsan

S�eniak. Talking about Modules and Delivery. In

ACM Conference on Lisp and Functional Pro-

gramming. ACM SIGPLAN, ACM Press, 1994.

[4] ILOG. ILOG Rules 3.0 Reference Manual, 1995.

[5] ILOG. ILOG Talk White Paper, June 1995.

[6] ILOG. ILOG Talk 3.2 Reference Manual, 1996.

[7] ILOG. ILOG Views 2.2 Reference Manual, 1996.

[8] Thomson.DyVE 1.0 Software User Manual, June

1996.

9

