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Abstract

We describe Gestalt-class, a CLOS-based application environment supporting persistence, multi-
ple inheritance, and relational querying capabilities. Gestalt-class has been in on-line use for sev-
eral years in a multi-user computer integrated manufacturing (CIM) system supporting several
integrated circuit fabrication laboratories at MIT and elsewhere. Gestalt-class has also been used
in stand-alone computer aided design (CAD) applications and, more recently, in the development
of infrastructure for distributed, collaborative research and design. We explain the implementation
and evolution of Gestalt-class and discuss our experience with its use in application and schema
development, support, and maintenance.

1. Introduction

As part of a project on computer aided integrated circuit fabrication at MIT, we designed and
implemented a dynamic, object-oriented, persistent programming environment using a relational
database as the principal backing store. The environment is implemented in CLOS and operates
atop Gestalt, an independent abstraction layer providing an integrated procedural interface to mul-
tiple heterogeneous data storage systems[1]. This organization provides applications with trans-
parent access to persistent objects, which are described and manipulated solely via CLOS
methods. Application programmers utilize the rich object modeling and generic functions of
CLOS in the integrated environment of Common Lisp to aid in program development.

We begin with an overview of the Gestalt system, followed by a description of the Gestalt object
model, implementation, and mapping from the object model to the relational model.
Next, we discuss the implementation of the interface in CLOS and give some examples of its use.
We conclude with a report on the status of the work.
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2. Gestalt

The basic architecture of Gestalt consists of a library, implemented in C, running atop existing
databases or storage systems. Gestalt is not itself a database; rather, it is a mechanism for logically
integrating data storage systems. Using Gestalt, applications are written in a host programming
language (originally C; later Common Lisp, via a foreign function interface).

The main motivation behind the design and implementation of Gestalt was the need for an appli-
cation development environment that did not require database programming expertise. By unify-
ing different database system interfaces under one common interface, application programmers
are able to avoid learning various database manipulation languages and can concentrate on the
design of the applications themselves. In addition, there was a desire for database independence,
i.e. for the model visible to applications to be independent of the actual underlying system data
models. Gestalt’s main architectural goal was to encapsulate various data manipulation interfaces
and data models, including the relational model, under one common data model and procedural
programming interface. This provides a great deal of implementation flexibility as well as an ele-
gant way to support “cross system” queries. The latter is especially useful in CAD/CIM; it can
provide applications with a unified view of design, manufacturing, and simulation data, even
though this information may physically reside within multiple heterogeneous data storage sys-
tems.

Gestalt in essence has a global schema multidatabase architecture and thus allows the underlying
data storage systems to maintain a level of autonomy. If necessary, data can be manipulated by an
application directly through the storage system interface (e.g. SQL), independent of Gestalt and
its translation module for that particular storage system. Any actively running Gestalt programs
will not see any such data updates until they explicitly access the underlying data via the Gestalt
interface. (In practice, we use direct storage system interfaces only rarely, for various maintenance
operations.)

2.1 Gestalt Data Model
The Gestalt data model specifies, in a language-independent manner, the mechanisms by which
data are described and manipulated. In an actual implementation, these descriptive and manipula-
tive mechanisms are expressed in terms of constructs native to the application programming lan-
guage (e.g., C or Common Lisp) being used. All data are captured via typed objects and values,
where objects have identity, and values do not. Objects and values may contain named, typed
attributes. Gestalt supports an extended set of pre-defined value types, including the usual scalars
such as strings, integers, and booleans, as well more complicated types for recording interval,
inexact, and temporal data. Value types are not persistent unless they are contained within a user
defined type. Even though a particular type may be built-in, its behavior is still specified only in
terms of the operators defined on instances of that type, so that the user sees no semantic differ-
ence between built-in and user-defined types; both are accessed by the application programmer
through their defined interfaces.

Crucially, a Gestalt schema is self-describing: the “meta-data” defining Gestalt types are Gestalt
data themselves, of predefined object typesdbtypeanddbattribute. Schema maintenance and
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modification is itself a Gestalt application task. Application developers may create new object
types and test them by using the enhanced schema in their programs. This ability to create and
modify new object types has provided for especially rapid prototyping and development of appli-
cations.

Gestalt did not originally support subtyping or inheritance. The need for “full object orientation”
in applications and their persistent data became apparent early on, however, and a model and
implementation compatible with CLOS was chosen, both because of the generality of the CLOS
object model and the use of CLOS in the development of an extensible representation language
for fabrication processes[2].

In addition to attribute names and types, the specification of an object type includes additional
attributes which define certain integrity constraints or behavior that instances of the type must sat-
isfy. These attributes are recorded in the correspondingdbtypeanddbattributeschema objects.
Dbtype contains the attributesdb-storage-system, identifying the storage system holding this type;
deletable; andsupertypes. Dbattributesupports the attributesone-to-one(vs. list-valued);unique
(can two objects of the same type exist with equal values of this attribute);can-be-null; invertible
(should Gestalt provide an operator for fetching objects using the value of this attribute as a key?);
active(is this attribute’s value set explicitly, or is it computed as needed by examining the object’s
relationship with other objects?);prefetched (should the value of this attribute be brought into
memory whenever the object is fetched?); andmutable. Active attributes correspond to “instance
variables” or “slots” in other object oriented programming environments; Gestalt models both
active and “passive” (computed) attribute access uniformly.

Gestalt operators includeselectors, mutators, constructors, anditerators(used to perform set-ori-
ented queries using a predicate). All Gestalt operators perform dynamic type checking. Routines
that detect run-time errors raise an exception flag and return a null object consistent with their
range type.

2.2 Gestalt implementation
All Gestalt operations are implemented via a generic database evaluator,dbeval. To implement an
operation, the evaluator interacts with the underlying storage system through a translation module
specified in a operation dispatch table, where each storage system has its own translation module.
The evaluator is independent of the specifics of the underlying data storage systems. The transla-
tion module receives requests expressed in terms of Gestalt operators, and accesses the appropri-
ate storage system through its own specific interface. The results of the operation are then
formatted and returned to the evaluator. Because of this design, no queries are hardwired into the
Gestalt system, and all arguments are evaluated at runtime. Arguments todbevalinclude the oper-
ator type and the data; Gestalt objects are passed and returned via handles uniquely identifying the
object by the logical pair (type-id, entity-id), wheretype-ididentifies the type andentity-id is
unique within a type.

Multiple storage systems are typically integrated in Gestalt installations; the particular systems
used depend on the needs of the intended applications and their data and performance require-
ments. One data storage system is always present: theschema-db storage system, a private, fast
access store which holds the meta-data (objects of typedbtypeanddbattribute).
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2.3 Mapping to relational model
A relational database is not required by Gestalt. However, the most heavily used Gestalt installa-
tions have used a relational database as the storage system for most of the application data types,
due to the ability of modern relational systems to handle large volumes of data and the relative
efficiency of implementation of set-oriented queries.

Each column of a relational table represents an (active) attribute of the relation while each row
captures the data associated with those attributes. The columns within a relation must all be of a
built-in or atomic type, i.e. a type which is known to the relational database. Gestalt represents
each object class with two primary relational tables and zero or more secondary relations. The two
primary relations are thebase andeid. The base table is used to store all single-valued attributes
within the object. Theeid relation is used to store the next available entity id for this object type.
Secondary or associative relations are used to store data associated with multi-valued object
attributes. Each attribute within an object type that is list-valued (notone-to-one) has an associ-
ated relational table.

Each object instance has a single entry within the base table. Each base table contains an internal
column, namedeid, which stores the entity id associated with this object instance. This Gestalt-
internal column is used to uniquely identify an entry within the base relation (i.e., it is the primary
key). Each object instance may have multiple entries within the associative relations associated
with that object type. Each entry within an associative relation contains the entity id of the object
instance which is stored in the base table, its value, and a sequence number. The entity id can then
be used tojoin the base table with the associative table in order to fetch the object’s attribute val-
ues. The sequence number is used to order the attribute values associated with that object
instance.

The relational model has no concept of inheritance or sub-typing. Inheritance is implemented
entirely at the Gestalt level, by copying inherited attributes. Subtypes are treated just like other
types when mapped onto the relational model (i.e. they have their own base tables, eid tables, and
associative tables).

2.4 Transaction/Concurrency Support
Gestalt is more than just a persistent storage layer; it allows multiple applications to access and
manipulate data concurrently and maintains the integrity of Gestalt objects. All primitive Gestalt
database operations (selectors, mutators, etc.) use transactions when interacting with the underly-
ing data storage system. For example, when creating an object within the Ingres relational data-
base system, several entries may be made to existing relational tables. In order to assure that these
are treated as one logical operation, they are packaged into a multi-statement Ingres transaction.

Gestalt does not have true user-defined application-level transactions. Instead, a simple locking
mechanism allows concurrent applications to obtain and release locks on Gestalt objects.

3. CLOS interface

Gestalt was originally designed for use with a static (C) application programming interface; type-
specific procedure declarations are automatically generated from the schema definitions. The
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advantages of exposing the generic evaluator,dbeval, were soon apparent, particularly in being
able to write generic inspector and browser programs and debugging tools; it was first used
through Common Lisp via a foreign-function interface (without CLOS). It is thedbeval interface
that is used in the CLOS implementation.

3.1 Gestalt-object classes and the gestalt-class metaclass
Gestalt objects appear to CLOS application programmers as CLOS objects. For each Gestalt
object type, there is a corresponding CLOS class whose metaclass isgestalt-class (a subclass of
standard-class), and whoseinstance-slots are the active attributes. These classes also inherit from
gestalt-object, an abstract class used to dispatch certain generic functions but principally to store
the Gestalt object handle (entity-id, type-id)pair as an instance variable. The purpose of the
gestalt-class metaclass is to override thestandard-class accessors;gestalt-class accessors invoke
dbeval (via a foreign-function or remote procedure call interface) to perform the appropriate
Gestaltselect or mutate operation. Both primitive data and objects are translated transparently
between lisp and Gestalt; when object references are returned from the persistent store through
Gestalt (e.g., as a result of a slot access), CLOS objects of the appropriategestalt-object subclass
are created. Active attribute values are saved in theinstance-slots, both when written by the CLOS
application and when returned from a Gestalt access; the CLOS objects thus act as both proxy
objects and application caches for the Gestalt objects.

Thegestalt-class metaclass is also used to specializemake-instance; after the standard initializa-
tion protocol is run, slot-values from the newly initialized object instance are used as arguments to
the Gestalt constructor (again, viadbeval). Slots are typed according to the correspondingdbat-
tribute, and type-checked (actually, the type-checking is an option but we normally leave it turned
on). Of course, type errors would be caught by the Gestalt layer but we have found it much easier
for debugging to have these errors caught at the CLOS level.

Instance identity (eq-ness) of objects of classgestalt-object is preserved by maintaining a hash-
table of instances in eachgestalt-classclass object, using theentity-id as the hash key. Whenever
an object reference is returned by Gestalt (i.e., in response to a slot-access, object creation, or set-
oriented query), the appropriate hash table is checked. If theentity-id is already present, the corre-
sponding instance is updated and returned, rather than a new one being created. Hence, within the
same program image, CLOS instances representing the same Gestalt object are alwayseq.

Programs can also create non-persistent “prototype” instances by defining classes that inherit
from agestalt-object class but specifystandard-class as the metaclass instead. For example, a
large, complex design object may need to be fully assembled in order to be checked against
design rules before being committed to the database. By defining a transient class that is fully
type-compatible with the persistent one, the object need not be stored only to be deleted again if
one of the design rule checks fails. (We have not provided such classes automatically as they have
been required for only a limited number of application types.)

3.2 Queries
Methods that invokedbeval to perform inverse (e.g.,person-with-name) and passive attribute que-
ries are generated by an extended initialization protocol forgestalt-class. Set-oriented queries are
assembled dynamically and may include a pattern specification used to construct a Gestalt iterator
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predicate.

3.3 Schema evolution
As with Gestalt types, thedbtypeanddbattribute types are available as CLOS class objects. We
do not hide them from the CLOS programmer, nor have we attempted to provide automatic cre-
ation ofdbtype objects from (or as a result of) instantiation ofgestalt-classes. Instead, CLOS pro-
grammers create new schema types usingmake-instance on thedbtype class. The function
generate-class-definitions-from-schema creates the appropriate CLOS class definitions, given the
name of an existingdbtype. It also generates the necessary definitions for the associated inverse
and passive query methods. We normally run this function over all types in the database when cre-
ating a new system image. However, dynamically loaded code may callgenerate-class-defini-
tions-from-schema in order to obtain class definitions for types created or modified since the last
system build. Schema changes do not mandate recompiling or reloading any files.

4. Examples

Before one can create a type within a Gestalt database, the attributes that are to be associated with
that type must be created. The following code example creates an attribute calledfacility, assum-
ing that adbtype FACILITY already exists:

(make-dbattribute :name “facility”
                  :dbtype (dbtype-with-name “FACILITY”)
                  :onetoone t :unique t
                  :canbenull nil :invertible nil
                  :active t :mutable t :prefetched t)

The following code fragment creates thedbtype MACHINE, assumingdbattribute-listis the list
of necessary attributes:

(make-dbtype :name “MACHINE” :overview “Lab Equipment”
             :domainspecific t
             :dbattributes dbattribute-list)

When a new type is created, all necessary Ingres relations are also created. In Figure 1, we have
the MACHINE type along with the Ingres relations that are created in order to hold the actual
data. There are three interesting points to make about the mapping example. First, all atomic and
composite types are stored “in-line”, i.e. within the base relation. Composite types (e.g. TIME,
which is made up of a DATE and a TIMEOFDAY) are broken down into their atomic parts before
they are physically stored within a base relation record. Second, all one-to-one references to
objects of a user-defined type are stored within a base relation record as an (entity id, type id) pair.
The type id is also stored because it makes the support of subtyping easier. If an attribute is
defined to be of a certain type then it is possible for objects of that type, as well as objects of any
of its subtypes, to be stored within that slot. Third, all attributes that are lists are stored in an asso-
ciative relation. Here, theoperators attribute is a list of type LABUSER, and its related data are
stored in the Operators_Associative relation. Each MACHINE instance will have zero or more
entries in this relation.
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Once a new dbtypehas been created, a call to the functiongenerate-class-from-schemacreates the
necessary CLOS classes and methods in order to create and manipulate instances of the new type.
Using our example MACHINE type, we can create new instances of type MACHINE. Since the
last_maintenanceattribute can have a null value, it need not specified upon the creation of the
new MACHINE instances.

(make-machine :name “machine1” :facility fab1
              :operators labuser-list1)

Once the instances of MACHINE have been created, it is now possible to access and to manipu-
late the data. All database access (including the previously mentioned object creation statements)
goes through three layers: the Gestalt CLOS interface layer, the Gestaltdbeval layer, and the rela-
tional data manipulation layer.

The following examples illustrate the transformation of CLOS level calls to relational query state-
ments. All relational queries are generated dynamically (e.g. using dynamic SQL). Given the eval-
uator operation code, the correct query statement is generated, using information which is stored
with the type and attribute definitions. Relational table names and column names are fetched from
this meta-data store and used to create the query at runtime. This gives the system added flexibil-
ity and means that no code need be changed if a table or column name were to change.

The first is a simple update ofmy-machine’s last_maintenance attribute. The last two examples
show how one can query the database to either fetch a list valued attribute or fetch a list of objects
which match a given criterion.

(setf (machine-last_maintenance my-machine) new-time)

effectively calls the “evaluator”:

dbeval(MUTATE, “last_maintenance”, my-machine, new-time);

This tellsdbeval to update thelast_maintenance attribute with the valuenew-timefor the object:
my-machine. This, in turn, generates the following underlying SQL relational query statement
(refer to Figure 1 for the names of the relational tables):

UPDATE Machine_Base SET Date = :DateVariable,
                        Timeofday = :TimeofDayVariable
                    WHERE EntityId = :machineEntityId

Because TIME is a composite type, it must first be broken down into its atomic parts in order to be
stored. Those parts are represented by the DateVariable and the TimeofdayVariable.

The following selects all MACHINE objects with namemachinename and belonging to facility
fab1:
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(setof ‘machine
   :where `(and (= facility ,fab1) (= name ,machinename)))

When this query is passed todbeval, thewhere clause is assembled into a Gestaltpredicate object.
Predicate objects represent arbitrary boolean expressions that are used as query constraints.

dbeval(ITERATOR_GENERATE, “MACHINE”, predicate);

where “MACHINE” is the type name of the type to be queried, andpredicate is an object repre-
senting thewhere conditions.  This generates the following relational query:

SELECT EntityId, Date, Timeofday FROM Machine_Base
   WHERE Name = :MachineName AND
         FacilityId = :fab1EntityId AND
         FacilityTypeId = :facilityTypeId

Here, we have supplied the machine name, and theentity-idandtype-id of the FACILITY object,
and are getting back the remaining (prefetched) attributes for all MACHINEs which match the
whereclause.  Gestalt creates the proper MACHINE objects and aniterator object to obtain them.
The CLOS interface layer uses the iterator to create a list of gestalt-class object instances.  Note
that attributes of type TIME are values, not objects with identity, and hence persist only for the
duration of their associated MACHINE objects.

The method invocation

(machine-operators my-machine)

results in the effective equivalent of

dbeval(SELECT, “operators”, my-machine);

producing the following  SQL query:

SELECT t1.name, t2.sequence
   FROM Labuser_Base t1,Operators_Associative t2
   WHERE t2.MachineId = :machineEntityId AND
         t2.LabuserTypeId = :labuserTypeId AND
         t1.EntityId = t2.LabuserId
   ORDER BY t2.sequence ASC

Here, we are assuming that the LABUSER type contains one prefetched attribute,name. The
query will return to Gestalt a list of names that were found to match thewhere clause. This list of
names will then be used to create Gestalt LABUSER objects that are then passed up to the CLOS
layer. If LABUSER had subtypes, then additional queries would be required to fetch any objects
belonging to those subtypes.
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                                                                 Figure 1
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5. Use and experience

The CLOS application environment described has been used principally in CAFE[3], a computer
integrated manufacturing system for integrated circuit semiconductor fabrication that has been in
use for several years in research and development laboratories at the main campus at MIT, at the
MIT Lincoln Laboratory, and at Case Western Reserve University. Gestalt-class has also been
used in related computer aided design applications; e.g., [4].

The current CAFE implementation runs on SUNOS platforms using an implementation of Kyoto
Common Lisp (KCL) with enhancements and additions by William Schelter, Rick Harris, Rajeev
Jayavant, and the authors, and the PCL implementation of CLOS, using the INGRES relational
database as the principal storage system for application data. A large number of students and staff
at different institutions have contributed various applications to CAFE; the vast majority were nei-
ther database nor lisp experts. We have added, removed, and upgraded various databases and stor-
age systems to the CAFE system, transparently to Gestalt-class and its applications.

The CAFE database and Gestalt-class have been used recently in the development of a remotely
accessible repository for semiconductor fabrication processes[5]. New schema objects to model
catalogs and libraries of manufacturing processes were added to the on-line, running, CAFE sys-
tem at MIT, connected to our existing laboratory processes, and used in a demonstration (at Stan-
ford) of a web-based process editor, all without the need to do any recompiles, off-line “schema
reloads”, or “system builds.”
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