Generic Function Parameter and Method Parameter Metaobjects:
A Proposed Enhancement to the CLOS Metaobject Protocol

Eric L. Peterson™
Artificial Intelligence Technologies Center
MITRE Corporation
1820 Dolley Madison Blvd.
McLean, VA 22102-3481
e-mail: eric@ai.mitre.org
URL: http://www.cs.umd.edu/users/ericp
phone: (703) 883-6116
FAX: (703) 883-6435

April 25, 1996

Abstract

Common Lisp’s Metaobject Protocol defines classes of objects which embody various aspects of
the object oriented programming environment. Current such metaobjects represent classes, slots, generic
functions, methods, as well as other object oriented entities. Not currently included, however, are objects
that represent generic function and method parameters. This paper first gives class definitions declaring
the behavior of these proposed parameter metaobjects and then proceeds to argue for for their inclusion
in the expected addition of the Metaobjects Protocol to the ANSI Common Lisp Standard.

1 Introduction

The Common Lisp Object System’s (CLOS) Metaobject Protocol (MOP), as put forth in The Art of
the Metaobject Protocol (AMOP) [2], provides metaobjects representing many aspects of the state of the
dynamic object oriented program.! It is widely embraced as a de facto standard.? Perhaps the largest
aspect of the object oriented program still untamed by the MOP is the rendering of the actual method
code as a network of objects. This paper, however, is concerned with the taming of a simpler aspect.

2 The Proposal

This paper argues for the incorporation of five new instantiable metaobject classes as well as their
ancestors into the CLOS MOP prior to the MOP’s incorporation into the Common Lisp ANSI standard.
These metaobjects represent generic function (GF) and method parameters. Their instantiable classes

are as follows:
o standard-generic-function-parameter
o standard-method-parameter
o standard-optional-parameter

o standard-rest-parameter

OEric Peterson is a member of the Machine Translation Group at the Artificial Intelligence Technologies Center at the
MITRE Corporation. Thanks go to Lawrence Mayka and David Terebessy for review comments and to Lawrence for the CLIM
example/argument.

1The term MOP, in this paper will be understood to mean the AMOP MOP.

2Slight differences in metaobject protocols exist between Common Lisp implementations.

o standard-keyword-parameter

The first two parameters represent the required parameters from generic function and method lambda
lists respectively. The remaining parameter metaobjects represent non-required parameter information
and are to be used in either generic function or method lambda lists containing non-required parameters.®
Please see Figure 1 for the definitions of these classes and for the descriptive information found in their
CLOS documentation strings.

This proposed family of metaobjects would require a new defmethod-like macro to allow for the input
of metadata beyond what is found in a standard defmethod macro. See Figure 2 for an example use
of such a macro. The conventional defmethod macro would still be available, but would serve to load
conventional parameter information into metaobjects of the kind described in this paper. It would still
serve ordinary object oriented programming needs in the traditional fashion. The new macro would be
for those who wish to document their parameters in a run-time retrievable fashion, as well as for those
who which to associate additional information with those parameters. To some, it may appear overly
verbose, yet it should be noted that it is no more verbose than the CLOS slot specifications within the
defclass macro. In both cases, terse representations would not allow for seamless addition of non-standard
attributes as is done by the subclassing of slot definition metaobjects.

Both standard-generic-function and standard-method, two existing MOP metaobjects, would receive
a new slot called parameters.* The lists would not contain the traditional &optional, &rest, &key, and
&allow-other-keys delimiter tokens. None would be needed, because the types of the metaobjects would
be immediately determinable. An additional sibling slot to parameters would be called allow-other-keys
and would take the place of the lambda list token of the same name and would serve as a boolean
indication as to whether other keys would be allowed.

The following five new GF’s would be added to the MOP:

e generic-function-parameter-class
o method-parameter-class

e oplional-parameter-class

e rest-parameter-class

o keyword-parameter-class

They would be analogous in purpose to the effective-slot-definition-class GF. They would allow the
CLOS user/extender to communicate the presence of parameter metaobject subclasses to the CLOS/MOP
environment.f

It may be argued that supplied-p does not belong in a parameter metaobjects because it has nothing to
do with the specification of the GF/method interface. Although it is clearly a piece of utility information
for the benefit of the method(s)’ lexical environment, this proposed change, like current lambda lists,
makes no distinction between interface specification, and wtelity information. It is proposed that any
information that is logically associated with such a parameter, is not only welcome, but encouraged to
become part of a parameter metaobject.

&aux parameters would simply be treated as if macro expanded into let expressions, as is presently
done. They would have no metaobjects.”

Caching of parameter metadata would, as allowed by the MOP, be permitted. Therefore, implemen-
tations would be free to create and cache conventional lambda lists in GF and method metaobjects.
Implementations could thus obtain runtime performance identical to their present implementations for
generic dispatch not involving additional parameter metadata from user enhanced parameter metaob-
jects.

3The term non-required is used to refer to &optional, &rest, and &keyword parameters. The term optional would, of course,
have been ambiguous.

4Both the use of the term slot and the use of class definitions with slots are for expository convenience. Precisely speaking,
such behavior could be implemented without the use of slots. Assume that the behavior is as if defined as shown.

5Future work alluded to later in this paper will require metaobjects for program variables in order to house variable related
metadata. This suggests the possibility that metaobjects for auxiliary variables would be needed as well.

(defclass parameter (clos:metaobject)

((parameter-name
:type symbol
:documentation "The name of a lambda list parameter"
taccessor parameter-name)
(parameter-documentation
:type string
:documentation "User supplied documentation of parameter"
raccessor parameter-documentation
:initarg :documentation))

(:documentation "Information pertaining to a given lambda list parameter"))

efclass standard-generic-function-parameter arameter
:documentation "Information pertalnlng to a generic function parameter
(. " . e . . . ,,))

(defclass standard-method-parameter (parameter)
((method-parameter-specializer
:type (or symbol list)
:documentation "Parameter specializer for generic dispatch"
raccessor method-parameter-specializer
:initarg :specializer
rinitform t))

(:documentation "Information pertaining to a given method parameter"))

(defclass optional-parameter (parameter)
((optional-parameter-default
:documentation "Default value for &optional parameters"
raccessor optional-parameter-default
:initarg :default
rinitform nil)
(optional-parameter-supplied-p
:documentation "An indication of whether the calling function
supplied the argument"
raccessor optional-parameter-supplied-p
:initarg :supplied-p
rinitform nil)
(optional-parameter-type
:type (or symbol list)
:documentation "Non-specializing type information"
raccessor optional-parameter-type
:initarg :type
rinitform t))
(:documentation "Information pertaining to a given &optional parameter'"))

(defclass standard-optional-parameter (optional-parameter) ()
(:documentation "Information pertaining to a given parameter"))

(defclass standard-rest-parameter (parameter) ()
(:documentation "Information pertaining to a given &rest parameter"))

(defclass standard-keyword-parameter (optional-parameter)
((keyword-parameter-keyword
:documentation "For when the keyword is different from the parameter name'
raccessor :keyword-parameter-keyword
rinitarg :keyword))
(:documentation "Information pertaining to a given &key parameter"))

Figure 1: Generic function and method parameter metaobjects would behave as if specified by these class
definitions. Metaobject classes whose names begin with standard are instantiable.

3

(defmethod+ foo ((bar-param

:specializer float
:documentation "bar parameter documentation"
:unit-of-measure :kilopascals)

%optional

(baz-param
:type float
:default bar-default-value
:supplied-p bar-supplied-p-value
:documentation "bar documentation"
:unit-of-measure :kilopascals)

Skey
(blat-param
:type float

:keyword :blat-actual-keyword
:default blat-default-value
:supplied-p blat-supplied-p-value
:documentation '"blat documentation"
:unit-of-measure :joules))

Figure 2: An example use of the proposed defmethod-like macro. Parameter attributes are specified in CLOS
defclass slot definition fashion. CLOS users not needing or wishing this much representational power would
simply use defmethod in the traditional manner.

3 Motivations

3.1 Adding Parameter Metadata

3.1.1 Parameter Documentation

Perhaps the most commonly felt desire for more parameter representational power is the desire to be
able to add runtime accessible documentation to GF and method parameters. Although such information
could be placed somewhere in a modification of the existing lambda list, if the parameters were presently
implemented as objects, these objects would be a convenient place for the parameter documentation to
reside. Although this first point is admittedly not a powerful argument, it should be noted that having
one more piece of parameter related information makes the notion of a more powerful data structure
such as an object more palatable.

3.1.2 Metaobjects and Open Implementation

The advantages of using metaobjects revolve chiefly around their provided ability to (¢) intuitively
navigate, query, and augment a runtime semantic net of CLOS program meta-information, and to (i)
override or augment any advertised default internal GF interface behavior of a CLOS program. This is
true provided that the GF is specialized on at least one metaobject. It is accomplished by the subclassing
of metaobjects and the advising of advertised GF’s with methods specialized on the new metaclass
subclasses. The reader is referred to the AMOP [2] and open implementation work by Kiczales [5] for
a defense of merits of the type of object based open implementation found in the MOP. Because of the
strict manner in which parameter metaobjects adhere to both the form and the spirit of the MOP, the
merits of parameter metadata rise or fall with the overall merits of the MOP.

An example of where the use of parameter-metaobject-based open implementation philosophy could
be put to good use is in case of CLIM. Had parameter metaobjects existed, they may have influenced the
design of CLIM. Had this been the case, CLIM could have been written to include GF’s that specialize on
parameter metaobjects for virtually any internal functionality that deals with parameter metadata. By
taking advantage of such a use of open implementation philosophy and parameter metaobjects, would-be
CLIM extenders could add new parameter constraints such as Harlequin’s new :VIEW constraint. This
would be accomplished by (i) subclassing the appropriate parameter metaobject and adding the :VIEW
constraint as a slot to the new subclass; then by (#) adding extending or overriding methods to advertised

CLIM internal GF’s to get the expected :VIEW behavior. As the open implementation camp stresses,
CLIM user/extenders could greatly augment and/or extend CLIM’s behavior without possessing source
code.

3.2 Enhancing Power in Generic Dispatch
3.2.1 Passing Metadata Around in a CLOS Environment

This paper’s final argument for parameter metaobjects lies in the ability to provide more sophisticated
forms of generic dispatch. The paper proceeds to lay out a brief description of what will be referred to
as the metadata-centric environment. Then, with this foundation, it sets forth parameter metaobjects
as one means of directly enhancing the power of this environment.

3.2.2 Basic Metadata Manipulation

Multiple options presently exist for maintaining objects with slot-instance-specific metadata such as
the unit of measure of the slot’s contents [3] [4]. An object’s slot can be queried for this metadata and
in the case of unit of measure data, a program could use this metadata to convert the slot’s contents to
another unit of measure. This sort of knowledge flow can be exemplified by the following simple step by
step scenario:

e The value of a slot named length is accessed and stored in a lexical variable.

e The associated unit of measure value of slot length is accessed and likewise stored in a lexical
variable.

e Some arithmetic manipulation is performed on the length value.
e This new length related value originally obtained from the slot is stored in a second slot.

o The associated unit of measure value is associated with the second slot.

As the scenario suggests, the function or method involved must manage both the data and the
metadata item. Furthermore, a slot may also have several other pieces of metadata such as slot contents
reliability, former slot states; or the source of the slot information. Transferring this metadata can clearly
become an onerous task for the application programmer.

3.2.3 Passing Metadata Through Generic Dispatch

Perhaps an even more cumbersome task arises when attempting to pass this slot data and accompa-
nying metadata to a generic function. Two options present themselves - either (i) the creation of extra
generic function parameters for the metadata or (ii) the creation of objects to consolidate the value and
its metadata. The latter option allows the simple passing of objects to the generic function in place of
the values, while creating extra parameters would quickly muddy up a clear, concise generic function
interface. Consolidated objects, on the other hand, would deny the application programmer the ability
to easily utilize Common Lisp functions. For example, the user would have to first (i) extract the value
from the consolidated object, (i) hand the value off to the Common Lisp function, and (¢i¢) perhaps
return the value back to the consolidated object. Simply stated, a consolidated object representing an
integer could not be passed to the Common Lisp inc function. While the consolidated object solution
would solve the parameter passing problem, the use of the values embodied in these consolidated objects
would be needlessly difficult. It should been pointed out that if Common Lisp used GF interfaces for its
functions, this problem largely would not exist. An extending or overriding method on a Common Lisp
GF could extract the information from the consolidated object.

In the absence of a more object oriented Common Lisp, the author chose to solve the latter load-
ing/unloading problem by hiding variable attributes, such as units of measure in program variable prop-
erty lists. In this system, generic functions could be invoked as before with variables as arguments, but
their associated metadata would be seamlessly and invisibly passed through and associated with the
called function’s parameters. This metadata would therefore be available inside of the called function.
It would be likewise hidden in the property lists of the formal parameters. Generic dispatch would, as
always, specialize on the Lisp objects being passed. In short, metadata would unobtrusively accompany
their respective data items throughout the program.

3.2.4 The Parameter Metaobject Tie-in

Rather that attempting to illicit agreement on any of the particulars of a metadata-centric environ-
ment or explaining it in any great detail, this paper is simply attempting to suggest that passing metadata
through generic dispatch is a desirable goal. Assuming the presence of such a means for passing values
and their metadata to a generic function, the opportunity arises to perform non-standard forms of generic
dispatch by means of accessing this metadata. For example, an application programmer may wish for a
form of generic dispatch that would first convert the argument’s unit of measure to that of the generic
function, and then proceeding with standard generic dispatch. Other more exotic future forms of generic
dispatch may insist that arguments must be above a certain accuracy threshold or that the data had
been gathered by a certain reputable type of measuring device.® Presently the MOP provides no place
to house such constraint information. Since such constraints are clearly associated with the individual
parameters, the parameter metaobjects, if they existed, would provide a structured means of associating
metadata such as unit of measure with the parameter method metaobject. Application programmers
could then specify unit of measure information or any other desired metadata for parameters in all cases
where extended parameter-constraint-based generic dispatch was wanted.

4 Parameter Metaobject Alternatives

The CLIM implementations stand as living proof that it is non only possible, but feasible to success-
fully implement CLOS systems with an abundance of complex parameter related information without
the benefit of MOP-based parameter metaobjects. These implementations used their own mechanisms
for associating parameter metadata with parameters. This other available means argument could, be
used against parameters metaobjects, but it could just as easily be employed against every metaobject of
the existing MOP. Although pre-MOP CLOS implementations also survived without metaobjects, this
paper, nevertheless, has argued that metaobjects offer an improved quality of life beyond the minimal
survival of closed implementation or open implementation lacking the mentioned benefits of exposure of
key internal user subclassable classes.

5 Conclusion

Although the majority of CLOS users would probably be quite happy without parameter metaobjects,
the same could certainly be said of the rest of the standard metaobjects. Metaobjects are there to act
a queryable state-keepers for the CLOS environment and to allow CLOS augmentations and extensions.
This paper simply asserts that parameter metaobjects belong in the future ANSI MOP. Their presence
can be easily ignored by the majority of CLOS users and richly exploited by those who wish to define
and utilize the additional power of parameter metadata.

References

[1] Steele, G. Common Lisp the Language (Second Edition), Digital Press, U.S.; 1990.

[2] Kiczales, G., Rivieres, J., Bobrow, D., The Art of the Metaobject Protocol, The MIT Press, Cam-
bridge, MA, 1993.

[3] Mato Mira F., “ECLOS: An Extended CLOS” in Object-Oriented Programming in Lisp: Languages
and Applications Workshop FCOOP 938, Kaiserslautern, Germany, July 1993.

[4] Peterson, E., “Dynamic Persistent Metadata: A Metaobject Protocol Based Approach to Increas-
ing Power in Knowledge Representation” in 1995 Association of Lisp Users Workshop Proceedings,
Cambridge, MA., 1995.

5] G. Kiczales, “Towards a new model of abstraction in software engineering” in Proceedings of the
g g
International Workshop on Reflection and Meta-Level Architecture, November 1992.

6 At present, there is no method-combination-class GF for returning a method combination metaobject given a quasi-standard-
class metaobject. This GF and other open implementation method combination GF’s would be necessary for such exotic generic
dispatch implementations to be consistent with other parts of the MOP.

