
24 avril 1996 1

An object oriented application for
corporate networks design

Erik Chrisment
France Telecom Cnet

06921 Sophia Antipolis Cedex - FRANCE
chrismen@sophia.cnet.fr

(+33) 92 94 53 10

1.0 Introduction

For several years, the CNET has developped many tools to design networks, especially
corporate networks. Many of them are based on very efficient algorithms, some of
them are intended to help the network designer to identify the input data. Others tools
compute the cost of a network solution.

Recently, many of these tools were developped independently, without any friendly nor
common user-interface. Because of these differences, few people were able to use suc-
cessively several of them. So, this situation led the CNET to launch a new project
whose target was to offer network designers an application containing most of the best
home network design tools, with a high-level integration and a friendly graphic user
interface (GUI). This application (ORIENT) must be open, which means that it must be
possible without much work to integrate new design tools.

This paper presents ORIENT which is based on a dynamic language with an object
oriented layer : the LISP dialect ILOG-TALK [TALK 95] and its associative object system
POWER-CLASSES[POWER-CLASSES95]. This application is quite a novelty because it
combines, thanks to the TALK /C++ binder, a dynamic language with a static one :
indeed, the GUI is made with a C++ classes library and some critical tools are also
written with C++.

Section 2.0 explains why we chose a dynamic language for our application.

Section 3.0 presents the application internal architecture. Each part of ORIENT has
been made as independently as possible, and there is especially a strong gap between
the applicative world and the graphical one ; a specific tool manages the dialog
between these worlds, it is presented in Section 4.0 .

Then, Section 5.0 concludes and presents our future work in dynamic objects.

2.0 Why dynamic objects

In this section, we try to explain why we chose an object oriented approach with a
dynamic language as LISP.

The major reasons are :

24 avril 1996 2

• Modelling : A powerful object language is more appropriate to model a domain
close to the reality. With Power-Classes, we used single and multiple inheritance,
relations between classes, demons on slots. As in CLOS [Steele90], the Meta Object
Protocol allows to customize the object oriented language, we used it for the alloca-
tion of some classes.

• Simplicity and flexibility : One of the advantages of LISP lies in the fact that develo-
pment is fast, because we do not have to worry about pointers, memory alloca-
tion,… LISP is well adapted to incremental development. Moreover, generic
functions that can be overloaded with several methods provide flexibility and sim-
plicity. It is a proper language for integrating new tools.

• LISP interpreter : It is essential in 2 ways.
At development time because it is easy to test new functions.
At runtime ; indeed, the ORIENT user can use the interpreter in a specific panel : with
some basic knowledge on LISP and the ORIENT API, an “expert” user may write
functions which can connect up basic Orient operations to solve specific problems.
Moreover, thanks to the interpreter, we can rapidly help a user who met a bug : we
often just have to send few lines of LISP code to solve the problem.

• portability : we needed a portable technology to supply ORIENT on different plat-
forms.

Then, we chose the LISP dialect TALK because it matches these needs and it has another
important characteristic : opening. TALK provides a high integration between C and
TALK programs : we can call TALK functions in C programs andvice versa. Moreover,
TALK provides a TALK /C++ binding which allows us to automatically access any C++
libraries.

3.0 Architecture of the application

This section begins with a short description of the functionnalities of ORIENT and then
presents the internal architecture of the application.

3.1 Overview

ORIENT is composed of 2 major kinds of tools, applicative tools and user-interface
tools.

Many of theapplicative toolscome from combinatorial optimization activities, others
has been developped especially for ORIENT. These tools are :

• Graph handling algorithms : shortest path, flow routing, minimum cut, minimum
spanning tree…

• Network algorithms : these tools have to solve combinatorial optimization problems
to find the best or the optimal solution among a finite or infinite number of alterna-
tive solutions. They are specialized for networks and take into account traffic, com-
pany geographic description, parameters describing service quality… A good
solution is a topology which can carry traffic with a minimal cost ; some of these
tools are heuristics : for example, we can cite simulated annealing ;

24 avril 1996 3

• Costs functions : from database files describing the costs of the services which are
sold by the most important carriers in the world, the cost functions compute the
client cost of a solution. The user can compare the prices and choose the carrier
which will propose the cheaper solution ;

• Performace evaluation functions : these functions may be used during the optimiza-
tion phase or on a given network.

User-interface tools : The user interface is composed of panels. Among these panels,
there are editors — especially, there are a grapher which allows network edition, a
spreadsheet which allows traffic matrices and objects attributes edition — and all the
windows from which the applicative tools can be run.

So, we can understand that ORIENT is composed of an important number of heteroge-
neous tools. Moreover, in the future, new tools will be added, and old ones could be
removed. It was very important for the architecture of ORIENT to be open. We will now
describe it in more details.

3.2 Internal architecture

We first describe here the architecture of ORIENT. In a second part, we will introduce
the organization of the applicative part.

The main characteristic of ORIENT architecture is modularity of the system compo-
nents. We avoided mixing different kinds of codes. The API of each functionnality is
published and most of the functionnalities can be used outside ORIENT.

Any applicative object has no knowledge as to what its graphic representations are.
Therefore, there is a strong separation between the applicative part, which is the
‘actual’ application , and the graphic one. The mediation between these 2 parts is made
by a dialog manager (DM) — DM is introduced in the next section.

For graphical tools, we chose a C++ graphic library which handles 2D vectorial
drawing, and widgets building. These graphical tools are integrated in ORIENT using
the TALK /C++ binding and DM.

FIGURE 1. Global architecture

Applicative

Part

User

Interface

Part

Dialog

Manager

C++ Talk/ Power-Classes

24 avril 1996 4

The figure 1 shows the 3 main parts of ORIENT : the applicative part can be used
without its user interface through its API, and the user interface part can be change into
a new version or used in another application. The dialog manager part manages the
mediation.

The applicative part (figure 2) is, of course, very important. We did not try to find a
generic model of telecommunication networks that would be optimally adapted to
every tools : specific treatments need specific structures. So the domain has been
modelled close to the reality with POWER-CLASSESand a powerful software layer,
composed of TALK generic functions, has been developped to handle graphs. This
layer, we called GREO, is the core of ORIENT. GREO has many interesting features : the
graph elements can belong to several graphs, a graph element can contain subgraphs, a
graph can have partial graphs…

Because such tools can run for a long time, some of them are written in C or C++ with
proper internal structures or classes. Then, an interface software layer is set between
the tool and ORIENT to convert tool structures into ORIENT objects andvice versa.
Others tools are written in TALK as a set of generic functions and directly work on
ORIENT objects.

FIGURE 2. Applicative part architecture

4.0 The dialog manager

We do not demonstrate here the interest of a strong separation between the application
and its GUI. Everyone knows that it is a necessary, but not a sufficient, condition to get
an easy maintenable application. MVC [Krasner88] is the most well-known concept
which demonstrated the advantages of this approach. Moreover, it allows us to provide
the ORIENT applicative part as a library which can be further linked to any other appli-
cation.

In this section, we present the software layer DM, that we created to handle the dialog
between the application and the GUI. The GUI must be consistent with the application
and this mediation tool is responsible for the initial construction and the permanent
updating of the display. The code that handles applicative data is isolated from the code

GREO

COST

FUNCTIONS

GRAPH

TOOLSTOOLS

GEOGRAPHIC

TALK / POWER-CLASSES

NETWORKS

TOOLS

C++

24 avril 1996 5

that handle graphics input and output : working on the application itself, we never
worried about the GUI.

DM has been developped with TALK and POWER-CLASSES. Callbacks are written in
TALK and set in the widgets from the DM part. Using the TALK /C++ binding, all the
C++ widgets can be handled from TALK and all their public member functions are
available.

The DM part is composed ofviews that are organized in a tree. These views manage
the consistency between applicative objects and their graphical representations. They
are defined with alegend. The legend is the way to update graphical objects when
some events modify applicative objects, it is defined with 3 generic functions for crea-
ting, refreshing or removing graphical objects.

In a more detailed view, the architecture of ORIENT can be seen as follow :

FIGURE 3. Exemples of lreations between applicative and user-interface objects

The applicative part contains a graph (G) , composed of 2 nodes, and a traffic matrix
(M) composed with the same nodes. G is graphically represented in a graph editor and
M in a spreadsheet. A dialog manager view (Vg) references G and its associated editor.
The 2 nodes are referenced by 2 subviews of Vg which know their display objects in
the graph editor. For M, the view Vm and 2 subviews point on the matrice editor.

An applicative object may have several graphical representations. Note that it is not
mandatory to instanciate so many views : the views are instances of a class that can be
derived.

DM supplies several services. They are :

• a notification mecanism associated to a subscription service ;

• an incremental updating of the display ;

• a delayed updating of the display.

In the next sub−sections, we present these services.

G

n1
n2

VG

n1
n2

n1 n2

M

Vm

24 avril 1996 6

4.1 Notification

This service is composed of :

1. a notification service which allows objects to send signals ;

2. a subscription service to the notification mechanism.

Besides the declaration of a class, we specify the slots that can notify signals and the
type of these signals. These slots will be able to send a signal at modification time. This
signal is emitted by aafter-writedemon.

The specification is done outside the class declaration, in an other module. It is inheri-
ted. When needed, this service can be desactivated at any moment ; we will see, further
in the paper, that it is very important for ORIENT.

Within DM, an instance of such a class subscribes to this service when it is graphically
represented. Until that moment, no signal is emitted.

4.2 Incremental update

When application objects are modified, they send a signal to DM if they are graphic-
caly represented. This signal is buffered and it will be treated by the dialog manager
engine.

A signal is a small object which contains information of the applicative modification :
the object that has been modified, its slot, its new value. The engine analyses this infor-
mation and dispatch the signal to each view of the modified applicative object. Then,
thanks to their legend, the views can update the associated graphic objects.

So, the state of the user interface part depends on the applicative part. When the user
activates a widget callback, applicative functions are fired. They will change applica-
tive objects. It is only when the engine receives messages from these objects that the
display is updated. A callback ends with the activation of the engine.

4.3 Delayed resynchronization

But, in our application, there are many tools, especially algorithms which make combi-
natorial optimizations. These algorithms can run for a long time and they can test many
solutions that will have an important impact on applicative objects. In that case, we do
not want an incremental updating of the display representation. It is unuseful (except
for debugging) and it can take a long time.

With DM, it is possible to stop for a moment the sending of signals. Then theafter-
write demon does nothing, only a function call is lost. The applicative part is modified
by the algorithm and the resynchronization process will update the user interface at the
end of the algorithm.

This delayed resynchronization process applies to a view, but it can be run on the entire
application if the view is the root of the tree. It computes the differences between the
applicative objects, returned by an overloaded generic function, and the associated gra-
phical ones. It first removes obsolete graphical objects, then it adds new ones and it

24 avril 1996 7

refreshes old graphical objects that are kept. It is a set of generic functions that can be
overloaded for specific situations. It is also used to restore the graphical representation
of an applicative object whose editor has been closed.

5.0 Conclusion and future works

The architecture of our application has been defined according to the following con-
cepts : genericity, modularity and maintenability. The last one can be see as a conse-
quence of the 2 previous.

• Genericity because our components are designed to be reused as much as possible.

• Modularity because it is an important feature to have a good maintenability level.

DM has been developped in CNET for our own needs and it is, at present, finalized and
packaged by the software editor ILOG, that will distribute it.

For the moment, applicative and user-interface parts are set together with DM in one
process. In the next version, we want to keep these parts in different process using soc-
kets. The mediation part will remain in the same process as the applicative part and any
graphical function call will be send through the socket, as a printable LISP form, to the
user interface part. This LISP form will be so small that it will not need any high throu-
ghput link between the 2 hosts.

An other objective is to supply ORIENT on different platforms. At the moment, it runs
on Sun Sparc Station, we will compile it on WINDOWSNT and on WINDOWS95.

6.0 Bibliography

[Krasner88] : G. E. Krasner and S. T. Pope. A coobook for using the Model-View-Con-
troller user interface paradigm in Smalltalk-80.JOOP, pages 26-49, August 88.

[Power-Classes95] : ILOG POWERCLASSES, Reference Manual, version 1.3. Prototype
was developped by the CNET with the Meta Object Protocol TELOS of ILOG-TALK .

[Steele90] : G. L. Steele JR. Common Lisp, the language. Second Edition.

[Talk95] : ILOG TALK , Reference Manual, version 3.13.

