
A GRAPHICAL INTERFACE FOR THE FUNCTIONAL

SYNCHRONOUS DATAFLOW LANGUAGE �-FLOW

Guilhem de Wailly

Th�eme Architectures Logicielles et Materielles

Laboratoire d'Informatique, Signaux et Syst�emes

URA 1376 du CNRS et de l'Universit�e de Nice - Sophia Antipolis

41, bd Napol�elon III - 06041 - Nice CEDEX - France

gdw@unice.fr

Abstract

In this paper a graphical interface for a functional

synchronous data-
ow language is described.

The intent of this work is to show how a dynamic

object-oriented language can be used to model

complex and realistic \things" in a very short time.

The object paradigm allows a homogeneous view

of objects with common methods. An inheritance

mechanism signi�cantly reduces the code because

of the feature sharing.

Here, the classical database object-model shows

the relationships between object instances. In ad-

dition, the inheritance-graph describes the inner

construct of objects. The program is speci�ed with

smalltalk.

The graphical toolkit is simulated with a root

class, so the code can be adapted to numerous

object oriented languages, because the graphical

aspects are not a part of the model. Particularly,

in this paper, we use GNU smalltalk without any

graphical possibilities. In our �nal version of the

graphical interface, we use the Stk language that

o�ers a graphical interface with tk, and an object

oriented layer with Clos.

1 Motivations

We have designed in our laboratory a CAD tool chain
which allows signal processing applications to be imple-
mented onto a speci�c parallel architecture [11]. The struc-
ture of the chain is shown in �gure 1.

The heart of this tool chain is a semantics language
named �-matrix [12] de�ned with both the functional [1, 3]
and the data-
ow [2, 4, 19] paradigms.

The use of a semantics methodology such as the deno-
tational semantics [20] allows proving time and memory
determinisms of the programs[9].

The data-
ow semantics is expected to support the in-
ner parallelism of the applications. In addition, it allows a
graphical representation of the programs. Due to the static
solving method of our abstract language, the parallelism
can be easily exploited. Moreover, the parallel architecture

simulator

GRAPHICAL INTERFACE

IMPLEMENTATIONS

parallelizer

LambdaFlow

hardware

translator

SYNTACTIC LANGUAGE

LambdaMatrix

linear code

parallel code

SEMANTIC LANGUAGE

MACHINE LANGUAGE

PARALLEL LANGUAGE

lexical & syntactic analysis

LambdaGraph

code production semantic analysis

Figure 1: A CAD tool chain for parallel implementation of

signal processing.

is expected to be very simple and cheap.

Last year, we presented a paper at the LUV'95 Con-
ference which dealt with the simulator of the parallel ar-
chitecture [8]. This paper is about the graphical language
named �-graph, on the top of the chain. This language is
a graphical interface for a syntactic language built upon
the �-matrices. As of this writing, �-graph is fully opera-
tional [7]. It is written with the powerful Stk [14] language
that o�ers a tcl/tk [23] interface to scheme [5, 1], and
an Object Oriented layer based on Clos, the Common
Lisp Object System [17].

The object oriented paradigm, and more precisely Stk,
allows writing complete and complex programs in a very
easy way. For example, �-graph is written with less than
4000 lines of code, a dream for a programmer!

In this paper we present the preliminary analysis done
before the Stk implementation of �-graph. This analysis
uses GNU smalltalk as a speci�cation language. In sec-
tion (x 2), we informally present the syntactic language �-
flow. Then we start the analysis in section (x 3) with the
screen model, the object model and the inheritance graph
of the application. The smalltalk code of the main func-
tions is in section (x 4). Finally, we discuss the graphical
editor �-graph itself in section (x 5).

1

filter := lambda i. BEGIN

O ! A + B + C + D; 'output

A := i - B; 'definition

B := 0 FOLLOWED-BY D; 'stream

C := A - B; 'application

D := C + E;

E := 0 FOLLOWED-BY C;

END

MAIN := lambda i:int. BEGIN

instance := filter(i);

output ! instance EXTRACT O;

END

Figure 2: Second order recursive �lter with �-flow

2 The �-
ow programming lan-

guage

The Functional Synchronous Data-
ow language �-flow
is based on an abstract language de�ned with a sound
semantics. It contains only a few objects to stay as simple
as possible and to support modularity. In addition, the
language is independent of the handled data: the data and
the corresponding operators are de�ned into some user's
algebra. The integer algebra is prede�ned in the language.

The aim of this paper is to de�ne a graphical interface
for this syntactic language. An example of a program can
be viewed in �gure 2, a simple second order recursive �lter.

In this example there are two modules, filter and
main. The main module instantiates the filter module
with the argument i, the input of the system, and it names
this instantiation instance. The main inputs have a sig-
nature with the form i#int while the inputs of the other
modules are untyped. Thus, it reads the output of the �lter
with an extraction and writes it in its own output.

2.1 Expressions

In �-graph, atoms (0) and application operators (+) are
relative to an algebra: they are dyamically added to the
lexical units of the language, with a compiler command
line option. So, the same �-flow program can have dif-
ferent behaviors, according to the algebra used. �-flow
de�nes:

Atoms are the basic expressions of the language. Natu-
ral integers and their associated operators, user's de�ned
data and their speci�c operators, identi�ers, and some
comparators are atoms. Users can specify their own al-

gebra built upon their data-type and relative operators.
The syntax of atoms is checked by the algebra. The in-
teger algebra is de�ned by default because some �-flow
operators use them.

Alternative is a choice between two expressions de-
pending on a condition. It is written:

IF condition THEN

then-clause

ELSE

else-clause

�-flow use integer as booleans: 0 denotes false while
the others integers denotes true. �-flow is a side-e�ect
free languagen due to its functional feature. So, the clauses

of the alternatives cannot create a side-e�ect, and their
parallelization is possible (the parallelization of the alter-
native is a big problem that Lee has with the synchronous
data
ow [19, 18]).

Application acts as a �lter of its arguments according
to its operator semantics, given by the algebra. It is writ-
ten:

OPERATOR (arg-1, ..., arg-n)

The applications with two arguments can also be writ-
ten with an in�xe syntaxe, such as :

arg-1 OPERATOR arg-2

De�nition allows identi�er-value associations. In the
current environment (see vector) or in the sub-
environments, this name becomes a synonym of the ex-
pression: the language is said \referencially transparent".
A de�nition is written:

name := value

Stream allows to write in a functional way a recurrent
equation [2]. A stream has two parts: state which contains
the initial value and contract for computing its next val-
ues. It is written:

state FOLLOWED-BY contract

All the streams of the program will be regenerated (the
action that updates the state) in the same time. So, the
�-flow streams are synchronous.

The stream construction allows writing a \state vari-
able" in a functional way. It is the operator that handles
the time in the language : it is the �-flow translation of
the Z-delay operator. All the applications which can be
designed with a state model can be written with �-flow,
that adds all the modern languages features.

Vector is a structured object that gathers some expres-
sion in an indexed way. A vector is written:

BEGIN

components-1;

...

components-n;

END

A vector must have at least one component. It de�nes
a frame of an environment [1]. All the de�nitions it
contains are visible from all inner expressions. Identi�ers
are statically linked into an environment, as in the lan-
guage scheme [1]. This static linkage allows e�cient com-
pilation [16]. The top-level environment contains only the
module de�nitions. In addition, the �-matrices are refer-
entially transparent, so, an identi�er can be replaced with
its associated value everywhere it is used.

Extraction can read an indexed value inside a module.
It is an explicit functional mechanism for multi-outputs.
It is written:

indexed EXTRACT index

Indexed must refer directly or not to a vector. index
can be either an integer for direct addressing, or an identi-
�er. If index is an identi�er, it must match with an output

2

with the same name in indexed (see output). In the ex-
ample in �gure 2, the index O in the extraction of the main
module matches with the O output of the �lter.

Output exports a value for extraction. An output is
written:

name ! value

Note that the outputs of the main module are outputs
of the system.

Module instantiation instantiates a module with
some arguments. Arguments of the instantiation are stat-
ically linked. It is written as an application:

module (arg-1, ..., arg-n)

The module instanciation acts as a macro-replacement,
but it takes into account the variables bindings.

Abstraction abstracts an actor with some parameters.
It is written:

lambda p_1, p_2, : : : , p_n. actor

Parameters pi are identi�ers. The parameters of the
main module must have asignature, and they are written
param#sign. The actor can be a vector or another ex-
pression, and the inside variables are bound with a lexical
scope �a la scheme.

2.2 Semantics properties

�-flow is the syntactic interface to an abstract lan-
guage, data
ow-based, called �-matrice, and its solving
abstract machine [12, 10]. It uses accurate semantics tools,
mathematics-based [20, 21]. Several functional solving op-
erators de�ne the abstract machine. This kind of abstract
machine cannot be found in the other available data
ow
languages. This machine emphases the functional property
of the whole model and allows proofs of results.

In fact, this language gives a full functional view of state
variables that are modeled with data
ow-based streams.
The stream semantics is closed to one introduced by the
Z�1 delay operator. So, a non-specialist can easily write
a �-matrix.

In addition, the language supports a modularized design
of applications. Each module can be conceived separately,
such as a component. When a module is de�ned, it can
be used such as basic operators, with no-distinction. This
feature emphases the reuse of programs.

�-matrices are built independently to the user-algebra:
They are de�ned as a \thing" for handling \things". One
can use them for integer-based operations, while another
for
oating-point operations, and a third one for bottles
in a factory, according to the user-algebra that de�nes
data and corresponding operators. Several algebra can be
mixed. So, they are not closed to prede�ned data-type,
such as cited languages, that enhances the generality of
the language.

Solving an application is a tail-recursive equation that
de�nes a functional abstract machine. Each step of the
recursive computation corresponds to each instant. This

equation can generate an in�nite number of steps. This
activity is modeled with two functional operators: The re-
generation operator that regenerates all the streams states
of the model and that returns the new regenerated system,
and the evaluation operator used by the regeneration op-
erator to evaluates the new stream states. The functional
view of the state-variables is due to the regeneration op-
erator.

Because we want time and memory-determinisms, some
systems cannot be solved. So, three criterion functions
are de�ned. A system that contains free variables |
unresolved links| is said unclosed. A system that con-
tains any �x-point equation is said uncalculable because
its computation is time-indeterministic. If the dimension
|amount of information used to describe the system|
grows with time, the system is said unstable. We estab-
lished in a proved way the relations between the properties
and the corresponding criterion functions. We also proved
that if a system has some properties at initial time, it keeps
them during all the others instants. Solving operators are
fully functional, so, the obtained results are proved ones.

In addition, the solving process is static due to the sta-
bility property. Easy parallelism exploitation is permitted
by this strong feature. We have proposed a speci�c parallel
architecture designed for �-matrices implementations [8].
In this architecture, all controllers are directly connected
to a main bus, itself connected to a common memory with
three-state chips. This architecture can be built with com-
mon controllers, for cheap implementations, or with spe-
cialized DSP chips.

Access con
icts are solved at compile-time, due to the
static feature of the solving process. The parallelism ex-
ploitation uses classical list-scheduling methods [6]. In or-
der to increase bus-sharing performances, we have de�ned
a particular task interleaving that allows a task to begin
before all its predecessors are ended. Unfortunately, this
enhancement cannot be calculated in a theoretical way [6]
because tasks cannot be interleaved in the worse case. An
architecture simulator has been built for fast testing [8].
Our parallel architecture is one way to implement �-ma-
trices, the other possibility is to use specialized chips, such
as ASICS.

The features of the modeling tool are:

� Especially designed for signal processing, that allows
a direct translation of Z-equations.

� Full support of modularization with lexical variable
bindings.

� User-algebra independent.

� Sound mathematics-based semantics, with full func-
tional feature.

� Functional abstract machine that solves the model.

� Static solving that allows parallelism architecture and
specialized chips to be designed.

� A cheap parallel architecture is proposed, as well as
its simulator.

3

3 Analysis

The analysis of this section deals with the graphical inter-
face layout, the object model and the inheritance graph.

3.1 Layout of the interface

Each actor shown in section (x 2.1) has a graphical repre-
sentation in �-graph:

c

t
e

an alternative has tree entries: a condi-

tion, a then clause and an else clause. It

has also one output.

operator

an application has several entries, de-

pending to the operator, and it has only

one output.

123
an atom has only one output that gives

a constant value. The value is algebra de-

pendent.

s c
a stream has two inputs, a state (or ini-

tial value) and a contract. It has only one

output.

name

an input port is one input of the edited

module. This object is the graphical repre-

sentation of a parameter in an abstraction.

name

an output port is one output of the edited

module. This object is the graphical repre-

sentation of an output object.

name

a module is a composition of several ac-

tors. It can have several inputs and several

outputs and it looks like an application.

The graphical elements above are from the grammar of
�-flow. This graphical grammar is used by most of the
signal processing applications designers when they draw a
�lter with some lines, some operators and the delay op-
erator used to handle the time. The constructor object is
the module that allows building composed objects.

Notice that the extraction object is not directly ex-
pressed in �-graph. In fact, an extraction occurs when one
of the outputs of a module is linked.

When a module is used in a program diagram it is il-
lustrated as in the box above. When edited, the module
representation becomes a window of the �-graph program
as shown in �gure 3.

The window is organized in three parts:

� a menu bar that allows to process some actions such
as �le saving/retrieving/printing, copy/cut/past op-
erations or compiling according to a target language;

� a command panel for creating actors;

� a canvas area for drawing the content of the cur-
rent module. By default, the current module is named
`unnamed.lg'.

An actor in the canvas area has several inputs/outputs
colored in di�erents ways. An input can be linked to only
one output. An output can be linked to several inputs. A
handle is up linked to either one output or one handle,
and it is down linked to several inputs / handles.

LambdaGraph: unamed.lg

menu

handle

command pannel

input port actor

input

actor

output

link

canvas

File HelpEdit Compile Options

Application

Stream

Alternative

Atom

Output

Module

Input

Figure 3: Screen layout of �-graph.

Each object (actor or handle) can be moved in the can-
vas area, and all the links it is attached follow its moving. If
an object is destroyed, all the attached links are destroyed
too.

The canvas area supports copy/cut/paste operations. In
addition, several objects can be selected. In this case, all
the operations concern the selected objects.

A program can be saved in a �le, and loaded from a
�le. In addition, a used module can be edited in a new
window. Any change in the interface of an edited module
(input/output ports) noti�es each window that uses this
module.

Atoms and applications are con�gured in a dialog box
according to the available algebra. An algebra exports
some operators de�ned with a name and a signature, and
a data type de�ned with a regular expression used to iden-
tify the data. Modules can be loaded/saved into some li-
braries.

3.2 Object model

The main purpose of this section is to introduced the re-
quired objects, their attributes, and the relations between
these objects. The method used is the classical object-
model of the database analysis [22], as shown in �gure 4.

An actor has zero, one or more inputs, and zero, one
or more outputs. An input is connected to zero or only
one link, and an output is connected to zero, one or more
links. So a link is connected to zero or one input and zero,
one or more outputs. A handle is always connected to an
upLink, and a link has zero, one or two handles. Notice a
link has either an upOutput or an upHandle, and is has
either a downInput or a downHandle.

From this object model of the application, the inheri-
tance graph can be directly deduced, as shown in the next
section.

3.3 Inheritance graph

This section deals with the classes of �-graph, deduced
from the object-model. The object model focuses on rela-
tionships between object instances. The inheritance graph

4

num

type

0,1

0,n

0,1,2 1

0,
n

1

0,n

1

0,1

0,1

num

numnum

num

INPUT

OUTPUT

LINK HANDLEACTOR

primary key

foreign key

actor

name

downInput

downHandle

upOutput

upHandle

actor

name

upLink

Figure 4: Object model of �-graphshowing the relationships

between the object instances.

shows how objects are built by specialization of more
generic objects, as shown in �gure 5.

normalColor
activeColor

normal
italic

= instance data
= class variable

tkKey
tkNum

mode
startMove
startLink

objectTable

TK DB

type

Alternative

Applicable
Application

Module

Port

Graph

Actor

IO
name
actor

numArgs
operator

Atom

Stream

value

Handle

InputPort

OutputPort

Input

Output

name

Link
upOutput
upHandle

downHandle
downInput

upLink

numOuts

Linkable

Figure 5: Object inheritance graph of �-graphshowing the

object classes. Grayed classes are explained in this paper.

The TK class represents the graphical toolkit with an
interface. Basically, this toolkit allows to creates some
graphical objects such as lines, box, circles, and to handles
them with their key. In fact, it is mapped on the canvas
widget of Stk. This class exports some graphical methods.
In this speci�cation, the toolkit is simulated. The class de-
�nes the class variable tkKey that is the number of cre-
ated graphical objects, and the instance variable tkNum

that is the number of graphical objects that inherit from
this class.

DB is a database. There is one database for each in-
stance window of �-graph1. This database is a set that

1In order to keep the code simple, this database is de�ned as a

class variable (objectTable). This means that each object that inherit

from this class has the same common objectTable variable.

contains all the actors, inputs, outputs, handles and links
of the application. It allows to perform selections on these
objects with criterion functions. Currently this method is
ine�cient and it is not directly implemented in the �nal
version of �-graph, but it is simple.

The Graph object is the main application class. It con-
tains some global variables (class variables) such as the
current mode of the command panel.

Then, we have three groups of objects: the actors, the
linkable and the links. The actor class is always specialized.
The linkable class is the root class of the inputs, outputs
and handles, and the link class is directly used.

4 Implementations

This section gives the coding speci�cation of �-graph. It
uses the GNU version of smalltalk. In the �rst part, the
classes de�nitions are given, and in the second part, the
methods are programmed.

4.1 Classes de�nitions

4.1.1 Roots classes

All the classes of �-graph inherit from these root classes.
The �rst root class is TK that o�ers an interface with
the graphical toolkit. The TK class de�nes one instance
variable tkNum for each graphical object that is created in
the toolkit. In addition, the class de�nes a class variable
that is a counter of tkNum. Notice that a class variable
is the same for each instantiated object that inherit from
this class.

� TK

Object subclass: #TK

instanceVariableNames: 'tkNum'

classVariableNames: 'tkKey'

poolDictionaries: ''

category: nil

!

The DB class declares a class variable named
objectTable. This variable is shared by all the instan-
tiated objects that inherit from DB. It is a way to de�ne
a global variable for an application.

� DB

TK subclass: #DB

instanceVariableNames: ''

classVariableNames: 'objectTable'

poolDictionaries: ''

category: nil

!

The Graph class is the application class of �-graph.
It de�nes some class variables such as mode (the current
mode of the command panel), startLink (the starting
Linkable object of a link operation) and startMove (the
starting location of a move operation).

� Graph

DB subclass: #Graph

instanceVariableNames: ''

classVariableNames: 'mode startMove startLink'

poolDictionaries: ''

category: nil

!

4.1.2 Actor

The Actor class is the root class of all the actors. It de�nes
no variables and it used only for sharing methods.

5

� Actor

Graph subclass: #Actor

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: nil

!

The Atom class inherits from the Actor class. It de�nes
type and value instance variables. For example, the value
of the integer atom in section 3.1 is the string 123.

� Atom

Actor subclass: #Atome

instanceVariableNames: 'type value'

classVariableNames: ''

poolDictionaries: ''

category: nil

!

4.1.3 Linkable

Linkable objects are inputs and outputs of the actors
and the handles. The root class Linkable de�nes two in-
stance variables normalColor and activeColor, respec-
tively used when the mouse is not, or is over the object.

� Linkable

Graph subclass: #Linkable

instanceVariableNames: 'normalColor activeColor'

classVariableNames: ''

poolDictionaries: ''

category: nil

!

The IO class is the root class of the inputs and output
objects. Because these objects belong to only one actor,
the class de�nes the actor instance class. In addition, it
is useful to name them with the name variable.

� IO

Linkable subclass: #IO

instanceVariableNames: 'actor name'

classVariableNames: ''

poolDictionaries: ''

category: nil

!

� Input

IO subclass: #Input

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: nil

!

A handle is always attached to one upLink.

� Handle

Linkable subclass: #Handle

instanceVariableNames: 'upLink'

classVariableNames: ''

poolDictionaries: ''

category: nil

!

A Link object can have either an upOutput or an
upHandle, and either a downInput or a downHandle.

� Link

Graph subclass: #Link

instanceVariableNames: 'upOutput upHandle downInput downHandle'

classVariableNames: ''

poolDictionaries: ''

category: nil

!

4.2 Methods

4.2.1 Creation methods

The creation methods are class methods. That means they
are applied to the class objects. They are used for the cre-
ation (instantiation) of the objects by calling the standard
smalltalk new method.

The following method is used for Actor creation with the
parameter loc, which is the Location in the canvas area
where the object has to be drawn. The local variable act is
instantiated with the new method. Then the class method
add (de�ned for DB) is invoked: this call adds the new
actor into the database. Then the instance method init

is invoked. Finally, the graphical object is created into the
toolkit at the loc location with the method tkCreate

� Actor.create

!Actor class methodsFor: 'creation'!

create: loc "this is a Smalltalk comment"

| act | "local variable"

act _ self new. "affectation"

Actor add: act. "class method invocation"

act init. "object instance method invocation"

act tkCreate: loc.

^act "returned value"

!!

. The creation of the IO and Handle object are similar
to the previous method.

A Link object is created with more parameters: input
and output linkable. These parameters are used by the
init method.

� Link.create

!Link class methodsFor: 'creation'!

create: upHandle upOutput: upo

downHandle: dnh downInput: dni

| lnk |

lnk _ self new.

Link add: lnk.

lnk init: upHandle

upOutput: upo

downHandle: dnh

downInput: dni.

lnk tkCreate.

^lnk

!!

4.2.2 Initialization methods

The initialization methods are called by the create class
method of each object, when the user creates an object.
These methods return the object that is initialized, such
as in the Actor initialization.

� Actor.init

!Actor methodsFor: 'initialization'!

init

^self

!!

The initialization of an Atom object is slightly more
complicated. It asks to the user the type and the value
of the created Atom, via two dialog boxes from the TK
toolkit.

� Atom.init

!Atome methodsFor: 'initialization'!

init

type _ TK

ask: 'type'

type: String

control: [:read| read size > 0]

error: 'unexpected empty string'.

value _ TK

ask: 'value'

6

type: String

control: [:read| read size > 0]

error: 'unexpected empty string'.

^self

!!

A handle is always created in order to cut a link in two
parts. So, the initialization method has the link to be cut
as parameter.

� Handle.init

!Handle methodsFor: 'initialization'!

init: downLink

"creates the new upLink"

upLink _

Link create: (downLink upHandle)

upOutput: (downLink upOutput)

downHandle: self

downInput: nil.

"updates the downLink"

downLink upHandle: self.

downLink upOutput: nil.

activeColor _ 'red'.

normalColor _ 'green'.

^self

!!

A Link is always created and initialized with either an
upOutput or an upHandle, and either a downInput or a
downHandle as parameter.

� Link.init

!Link methodsFor: 'initialization'!

init: uph

upOutput: upo

downHandle: dnh

downInput: dni

upHandle _ uph.

downHandle _ dnh.

upOutput _ upo.

downInput _ dni.

^self

!!

4.2.3 Selecting/changing methods

The following methods are selectors for the instantiated
objects. The Actor selector methods return the set of its
inputs (inputs) or the set of its outputs (outputs).

� Actor.select

!Actor methodsFor: 'selector'!

inputs

^Input select:

["defines a procedure..."

:in| "... with one parameter..."

self = (in actor) "... that performs a test"

]

!

outputs

^Output select: [:out| self = (out actor)]

!!

The actor selector of the IO class returns the actor

instance variable. In addition, the links selector method
returns the set of the links attached to this object with a
selection into the database.

� IO.select

!IO methodsFor: 'selector'!

actor

^actor

!

name

^name

!

links

(self isKindOf: Input) ifTrue: [

^Link select: [:lnk| self = lnk downInput]

]

ifFalse: [

^Link select: [:lnk| self = lnk upOutput]

]

!!

The upLink selector of the handle object returns the
instance variable upLink while the downLinks method re-
turns the set of links "down attached" to this handle, with
a selection into the database.

� Handle.select
!Handle methodsFor: 'selection'!

upLink

^upLink

!

downLink

^Link select: [:lnk | self = lnk upHandle]

!!

The �rst four selector methods of a Link return the
corresponding instance variables. The isValid selector
method returns a boolean which is true is this link is in
the database, and false otherwise. This strategy is used by
the destroying method in order to avoid the recursion on
a link deletion.

� Link.select
!Link methodsFor: 'selector'!

downInput

^downInput

!

downHandle

^downHandle

!

upOutput

^upOutput

!

upHandle

^upHandle

!

isValid

^1 = ((Link select:[:lnk | self = lnk]) size)

!!

The changing methods of a Link object alter its instance
variables.

� Link.change
!Link methodsFor: 'changing'!

downInput: dni

downInput _ dni.

^self

!

downHandle: dnh

downHandle _ dnh.

^self

!

upOutput: upo

upOutput _ upo.

^self

!

upHandle: uph

upHandle _ uph.

^self

!!

4.2.4 Graphic creation methods

The graphic creation methods create the objects which
can be viewed by the user in the screen. They call the TK
interface methods. The Actor tkCreate methods create
the inputs and the outputs of the actor. For example, the
Atom tkCreate creates the corresponding objects, and it
creates the output object.

� Atom.tkCreate
!Atome methodsFor: 'graphical drawing'!

tkCreate: loc

tkNum _ TK tkKey.

TK draw: 'atom(type, value)' key: tkNum.

Output create: (loc ox: 50 oy: 100)

actor: self

name: 'output'.

^self

!!

7

4.2.5 Moving methods

The next methods are de�ned in order to move some ob-
jects in the canvas area of �-graph, in a new Location
loc. Before moving an Actor object, the following method
moves all its inputs/outputs. Then the toolkit is appealed
to move the graphical object.

� Actor.move

!Actor methodsFor: 'moving'!

move: loc

self inputs do: [: in| in move: loc].

self outputs do: [:out| out move: loc].

TK move: self

!!

When a IO is moved, all the attached links has to moved
too before the graphical object in the toolkit is moved.

� IO.move

!IO methodsFor: 'moving'!

move: loc

| links |

"list of links attached to self"

links _ self links.

(self isKindOf: Input) ifTrue: [

links do: [:lnk| lnk downMove: loc]

] ifFalse: [

links do: [:lnk| lnk upMove: loc]

].

TK move: self

!!

When a Handle is moved, its upLink is �rst moved, then
all its downLinks are moved one by one.

� Handle.move

!Handle methodsFor: 'moving'!

move: loc

| downLink |

"moves the upLink"

upLink downMove: loc.

"moves the downLinks"

self downLink do: [:lnk| lnk upMove: loc].

"moves the graphical object"

TK move: self

!!

When a Link is moved, it is simply redrawn.

� Link.move

!Link methodsFor: 'moving'!

upMove: loc

TK move: self

!

downMove: loc

TK move: self

!!

4.2.6 Linking methods

The attaching methods create links between inputs and
either outputs or handles. These methods are bound to
the mouse events in the TK toolkit. In addition, they use
the class variable startLink of the Graph class. The con-
ditions required for linking are: inputs can have only one
link to either an output or a handle, and outputs and
handles can have several links. The pair: method of the
Linkable object determines if the parameter pair can be
linked to self. The attach method gives always an input
as parameter.

� Linkable.attach

!Linkable methodsFor: 'ask'!

pair: pair

(self isKindOf: Input) ifTrue: [

^ (pair isKindOf: Output)

or: (pair isKindOf: Handle)

] ifFalse: [

^(pair isKindOf: Input)

]

!

attach: pair

(self pair: pair) ifTrue: [

(self isKindOf: Input) ifFalse: [

self attach: pair

] ifTrue: [

pair attach: self

]

]

!!

The attaching methods of the Handle and the Output
objects are very similar. They checks if the Input parame-
ter in is not already attached and then, they create a Link
object with the good arguments.

� Handle.attach

!Handle methodsFor: 'attaching'!

attach: in

"checks if in is not already attached"

(0 = (in links) size) ifTrue: [

Link create: self upOutput: nil

downHandle: nil downInput: in

]

!!

� Output.attach

!Output methodsFor: 'link'!

attach: in

"checks if the input is not already attached"

(0 = (in links) size) ifTrue: [

Link create: nil upOutput: self

downHandle: nil downInput: in

]

!!

4.2.7 Destroying methods

When an Actor is destroyed, all its inputs / outputs are
�rst destroyed. Then, the graphical object is removed from
the screen and the actor is removed from the database.

� Actor.destroy

!Actor methodsFor: 'destroying'!

destroy

"destroyes all the input/outputs"

self inputs do: [: in| in destroy].

self outputs do: [:out| out destroy].

"destroyes the graphical object"

TK destroy: self.

"removes self from the database"

Actor destroy: self

!!

When an Input is destroyed, all the link attached to it
are destroyed. Then, the graphical object is destroyed, and
�nally, the object is removed from the database.

� IO.destroy

!Input methodsFor: 'destroying'!

destroy

"destroyes the downLink"

self links do: [:lnk| lnk destroy].

"destroyes the graphical object"

TK destroy: self.

"removes self from the database"

Input destroy: self

!!

The destruction of a Handle is slightly more di�cult. If
the handle simply cuts a link, it is remover and the two
links are joined. If the handle has several downLinks, each
of them are destroyed one by one.

� Handle.destroy

8

!Handle methodsFor: 'destroying'!

destroy

| downLinks upLinkValide |

"asks to the dtabase is the upLink is alive"

upLinkValide _ upLink isValide.

"list of the downLinks"

downLinks _ self downLink.

"two cases according to the number of downLink(s)"

(1 = downLinks size)

ifTrue: ["is only one downLink"

downLinks do: [:theDownLink|

upLinkValide

ifTrue: [

"updates the upLink and redraws it"

upLink downInput:

(theDownLink downInput).

upLink downHandle:

(theDownLink downHandle).

TK redraw: upLink

].

"detroyes the downLink"

theDownLink destroy.

]

]

ifFalse: ["if several downLinks"

upLinkValide ifTrue: [

upLink destroy

].

downLinks do: [:oneDownLink|

"destroys all the links"

oneDownLink destroy

]

].

"destroyes the graphical object"

TK destroy: self.

"removes self from the database"

Handle destroy: self

!!

When a Link is destroyed, it �rst removes itself from
the database, in order to avoid recursive deletion. Then it
suppresses the upHandle and the downHandle.

� Link.destroy

!Link methodsFor: 'destroying'!

destroy

| downLink upLink |

"suppresses the graphical object"

TK destroy: self.

"removes self from the database"

Link destroy: self.

"supresses the upHandle, if it exists"

(upHandle isNil) ifFalse: [

downLink _ upHandle downLink.

(0 = downLink size) ifTrue: [

downLink do: [:lnk | lnk destroy]

]

].

"supresses the downHandle, if it exists"

(downHandle isNil) ifFalse: [

downHandle destroy]

!!

5 �-graph

The graphical editor �-graph [7] allows graphical program-
ming in the data
ow style. The semantics used are func-
tional synchronous data
ow (FSDF), based on an alge-
braic abstract language. The layout of this editor can be
seen in �gure 6.

On the left side of the window, the buttons in the com-

mand panel allow the user to create actors with a click
in the canvas area. Actors can be moved, con�gured, se-
lected, linked and destroyed. The clipboard allows easy
cut/copy/paste operations. The data
ow diagram of a

Figure 6: Graphical editor.

second order recursive �lter was drawn in the canvas area
in �gure 6. It is constituted with actors (-, i, fby,: : :)
handles (A') and links (A!A'). An actor has some inputs
(in top) and some outputs (in bottom).

An output can only be linked to either an input or
a handle, and it can only have one link. Handles can be
viewed as deferred outputs. They have the same proper-
ties than outputs, but they can be separately moved, se-
lected, linked and destroyed. Inputs, outputs and handles
can have a name (A, A'). Links can be destroyed using a
mouse click.

Atoms and applications are con�gured according to the
current used algebra (mixed algebra in the same module
is allowed). An algebra de�nes a data type featured by its
name and its check function. The check function controls
the value the user enters in the con�guration dialog-box.
In addition, several operators are de�ned in an algebra.
They are basic entities featured by their signature that
de�nes the type of the arguments and the type of the
returned value. Operators only have one output. In the
example, + and - operators are provided by the integer al-
gebra. In addition, the string "0" is checked as an integer.

A program (also named a module) is de�ned by its
body that contains several actors linked together, inputs
and outputs ports. It can be saved, loaded and printed in
a Postscript form. Modules are organized in libraries. A
module can be copied into a library, that allows its reuse.
In the example, filter is a main module.

�-graph is written with the Stk scheme language that
interfaces the tk library [14, 23].

6 Future work

The �rst version of �-graph is unable to run directly an
application. It can only call translators that transform
a program into other forms. Several translations are pos-
sible. The author is working in a scheme translator that
allows direct simulations of programs, with a special li-
brary that contains wave-generators and wave-viewers.
The main problem with the use of foreign translators is
the errors report: it would be helpful for the designer to

9

see in the diagram where an error occur. For the moment,
the designer sees an error into the translated form of the
diagram, in a separate window, which is, in some case,
di�cult to read.

A �-flow translator (x 2) of a �-graph is being com-
pleted. The �-flow compiler produces several target
codes: sisal [13], signal [4], lustre [15], Ptolemy with
Lee's Synchronous Data-Flow (SDF) [19]. A target code is
de�ned in less than twenty lines of code, and one line per
operator of each algebra.

7 Conclusion

In this paper, a practical use of a dynamic object-oriented
language is shown. The e�ciency of such languages per-
mits to put in the pages of this article the speci�cations
of the problem, a short object-oriented analysis, and the
main functions of the program.

A graphical interface to a syntactic language is mod-
eled here. The analysis shows how to use the well known
database object-analysis in other kind of applications.
This model focuses on the leaf objects (that can be in-
stantiated) and on their inner relationships. From this �rst
step of analysis, the inheritance graph can be deduced: it
shows how classes of objects are built.

The coding of this model has two phases: the classes
description and their associated methods. The classes de-
scriptions use the inheritance mechanism which deals with
a static sharing of features. Method descriptions use the
method-specialization mechanism to deals with dynamic
sharing of features. These mechanisms greatly increase the
reuse of pieces of code. The resulting code is actually short
and e�cient. Anyone can rapidly modify it. Comments
are not needed everywhere because the Stk language acts
such as a speci�cation language.

�-graph and the associated tools, such as �-flow and
the abstract language of the �-matrices are out of the pre-
liminary phase of de�nition. They have been created to
allows graphical representations of signal processing ap-
plications to be implemented onto a parallel architecture.
The CAD tool chain enters into a phase of tests and opti-
mizations.

References

[1] H. Abelson, G.J. Susman, and J. Susman. Structure and

Interpretation of Computer Programs. MIT Press, 1987.

[2] E. A. Ashcroft and W. W. Wadge. Lucid, a Nonprocedural

Language with Iteration. j-CACM, 20(7):519{526, July

1977.

[3] J. Backus. Can programming be liberated from the von

Neumann style? A functional style and its algebra of pro-

grams. j-CACM, 21(8):613{641, aug 1978. Reproduced in

\Selected Reprints on Data
ow and Reduction Architec-

tures" ed. S. S. Thakkar, IEEE, 1987, pp. 215-243.

[4] A. Benveniste and P. LeGuernic. Hybrid dynamical sys-

tems theory and the signal language. IEEE Transactions,

35:535{546, 1990.

[5] W. Clinger and J. Rees. Revised4 report on the algoritmic

language scheme. Technical report, MIT Arti�cial Intelli-

gence Laboratory, CSDTR 174, october 1990.

[6] M. Cosnard and D. Trystram. Algorithmes et architectures

parall�eles. Inter�Edition, 1993.

[7] G. de Wailly. User manual of lambda graph, the graphical

interface of the functional synchronous data
ow language

lambda
ow. Technical Report 95-33, I3S, july 1995.

[8] G. de Wailly and F. Bo�eri. A parallel architecture simula-

tor for the lambda matrices. In Association of Lisp Users

Meeting and Workshop Proceedings. LUV'95, august 1995.

[9] G. de Wailly and F. Bo�eri. Proofs upon basic and modu-

larized �-matrices. Technical Report 95-69, I3S, december

1995.

[10] G. de Wailly and F. Bo�eri. Abstract language for sig-

nal processing modeling with parallel implementations is-

sues. In VIII European Signal Processing Conference (EU-

SIPCO'96) - TO APPEAR. EURASIP, september 1996.

[11] G. de Wailly and F. Bo�eri. A cad tool chain for signal

processing applications, with parallel implementation is-

sues. In Groningen Information Technology Conference,

february 1996.

[12] G. de Wailly and F. Bo�eri. Speci�cation of a functional

synchronous data
ow language for parallel implementa-

tion with the denotationnal semantics. In Symposium on

Applied Computing. ACM, february 1996.

[13] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report

on the SISAL language project. Journal of Parallel and

Distributed Computing, 10(4):349{366, 1990.

[14] E. Gallesio. Stk reference manual, version 2.2. Techni-

cal report, Laboratoire I3S-CNRS URA 1376 - ESSI, e-

mail:kaolin.unice.fr:/pub/, october 1995.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The

synchronous data
ow programming language LUSTRE.

In Proceedings of the IEEE, pages 1305{1319, 1991. Pub-

lished as Proceedings of the IEEE, volume 79, number 9.

[16] S.L. Peyton Jones. The implementation of Functional Pro-

gramming Languages. Prentice Hall International, 1987.

[17] GL. Steele JR. Common Lisp: The Language, 2nd Edition.

Digital Press (Bedford, MA), 1990.

[18] E.A. Lee. Consistency in data
ow graphs. IEEE Trans-

actions on Parallel and Distributed systems, 2(2):223{235,

April 1991.

[19] E.A. Lee and D.G. Messerschmitt. Synchronous data

ow. Proceedings of the IEEE, 75(9):1235{1245, Septem-

ber 1987.

[20] A. Lloyd. A pratical introduction to denotational seman-

tics. Cambridge Computer Science Texts 23, 1986.

[21] B. Meyer. Introduction �a la th�eorie des langages de pro-

grammation. Inter Edition, 1992.

[22] S. Miranda. L'art des bases de donn�ees - Tome I : Intro-

duction aux bases de donn�ees. Eyrolles, 1988.

[23] J.K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley,

1994.

10

