
A Common Lisp Framework for Document Classi�cation and

Retrieval

Andrew J. Blumberg

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology

blumberg@ai.mit.edu

April 24, 1996

Abstract

This paper describes the Document Classi�cation Substrate (DCS) and accompanying protocols.

The DCS is a framework of Lisp support code facilitating the prototyping and deployment of systems
for automatic document classi�cation and retrieval applications. The DCS design reects the following

observations concerning the problem of classi�cation of texts.

1. Initial preprocessing (lexical feature extraction) is at least as signi�cant as the choice of classi�cation
algorithm in terms of impact on classi�cation performance. Richer lexical features will enable better

classi�cation.

2. The preprocessing stage needs to adapt in response to the particular document space just as the

classi�cation algorithm does.

3. Adaptive classi�cation algorithms do not need to learn everything - encoding a priori operator

information is important.

4. For purposes of rapid experimentation, the speci�c functional modules of a classi�cation system

should be strongly separated by an abstraction barrier.

The DCS provides separate management code for lexical feature extraction and classi�cation, dividing

the system into two layers. Interaction between these layers is strictly managed by a protocol which en-

ables each layer to be abstracted away from the other layer, thereby facilitating independent development
and experimentation. The lexical classi�cation layer provides support for managing arbitrarily expressive

lexical features which can dynamically adapt in response to the particular runtime environment. The

categorization layer contains facilities for controlling arbitrary compositions of classi�cation algorithms
(each packaged and abstracted away from the others) and actively supports hybrid categorization algo-

rithms; categorization algorithms mixing adaptive (typically statistical) classi�cation algorithms with a

priori symbolic rules.
The DCS was implemented in Common Lisp and has been tested with a set of lexical features based on

interface code to the Wordnet database and a series of classi�cation algorithms mixing various statistical

approaches and probabilistic inference networks on an extensive document corpus.

1 Introduction

In recent years both the volume of information available electronically as well as the capacity to encode

information in electronic format have increased tremendously. Accordingly, the need for tools enabling users

to access this information has also grown. Access to stored information (in all formats) depends on indexing

and classifying the data. In an informationally diverse, rapidly expanding, and highly decentralized medium

like the World-Wide Web, this is a tremendous problem. Many di�culties with information retrieval and

access are a direct result of exploding corpora coupled with a lack of adequate manpower or indexical concept

to adequately index the incoming data.

1



The clear solution to such problems lie in systems which perform automatic document classi�cation and

retrieval - algorithmic methods for determining content information. However, such systems must satisfy

fairly stringent constraints. The system must be e�cient (both in time and space) due to the large volume

of information in most realistic corpora and the fairly sharp limits of operator patience. Furthermore, to be

directly utilizable by humans such a system must encode a functional approximation of human mechanisms

for indexing content. To date, the most popular solution has been the Salton algorithm [S80] which employs

frequency-based keyword matching coupled with clustering algorithms to categorize classes of documents.

Although contemporary implementations of the Salton algorithm are extremely e�cient and scale well to

very large data sets (note the relative success of Digital's Alta Vista service operating on over 30 gigabytes

of indexing data), they all su�er from the inherent problems associated with keyword based approaches.

Speci�cally,

1. Keyword matching is only e�ective for content domains that are characterized by the repetition of

particular indicator words at a rate signi�cantly higher than background repetition (over the document

universe as a whole).

2. Algorithms based on keyword matching are rather di�cult to focus - typically vastly more information

than is needed is returned to ensure a su�cient return.

Although the �rst objection stated above may appear tautological, it is a signi�cant criticism to note.

Consider situations in which each document may contain several disjoint (or only loosely related) topics - even

if each topical domain is well characterized by keywords, the whole document may not present su�ciently

frequent usage of the keywords relative to background usage. And of course categorizations based on stylistic

ground (e.g. type of presentation) are not well characterized by keywords. The second criticism will no doubt

be familiar to anyone who has employed a search over the World-Wide Web.

These are very di�cult problems - and there are not yet clear and direct solutions. The DCS system

was designed to facilitate the development and evaluation of new document classi�cation systems - as well

as embody certain design principles we believe are integral to improving on the performance of traditional

document classi�cation methods.

2 Design Principles

The following observations about the problem of document classi�cation were embodied in the DCS.

1. The choice of lexical features is as important as the choice of speci�c classi�cation algorithm. Am-

ple experimental evidence as well as certain theoretical results suggest that most statistical learning

techniques will perform at a roughly equivalent level - and thus the real di�erence in performance will

come from the decision about what kinds of information to extract from the raw data. It's all in the

features.

2. The preprocessing stage needs to adapt in response to the particular document space just as the

classi�cation algorithm does. Given the importance of the lexical features, the choice of which features

are applied should adapt to speci�c runtime experience and the document universe.

3. Adaptive classi�cation algorithms do not need to learn everything. In many domains classi�cation

performance can be dramatically improved by employing a priori rules to cover cases where the operator

can provide specialized knowledge. In addition, this reduces the burden on the classi�cation algorithm

- which can be a signi�cant consideration for statistical methods.

4. For purposes of rapid experimentation, the speci�c functional modules of a classi�cation system should

be strongly separated by an abstraction barrier. Given the roughly equal levels of importance of the

classi�cation algorithm and the lexical features, the development of these parts of the overall system

should be decoupled to allow independent research.

2



3 General Architectural Overview

The DCS is organized into two layers - a lexical classi�cation layer and a categorization layer. The two

layers interact via a storage system (which might for example be a persistent database). This interaction is

mediated by a strict protocol which enforces su�cient abstraction barriers so as to su�ciently modularize

the system to enable mostly independent development of the levels. The roles of the layers are :

1. The lexical classi�cation layer is responsible for the transformation of raw text into a sequence of tokens

- where the tokenization process extracts lexical features.

2. The categorization layer is responsible for performing the actual categorization of documents based on

the coded output of the lexical classi�cation layer as well as stored information derived from previously

presented documents (often with supervisory categorization information).

3. The storage layer is responsible for mediating the interaction of the two layers and for management of

any long-term information necessary for adaptive algorithms (operating in either layer).

4 The Lexical Classi�cation Layer

The lexical classi�cation layer provides code which manages the extraction of lexical features from the raw

text of the document. There are two major components to this transformation of the text. First, the text is

converted to tokens via the action of one or more tokenizing functions - these perform very simple processing,

such as removing all punctuation and extracting word-chunks by grouping characters delimited by spaces.

Then, instances of lexical features are extracted from the sequence(s) of tokens. Lexical feature archetypes

are stored as objects encapsulating a constraint function - this function serves to specify which tokens or

token-groups are examples of the feature. The constraint facility possesses a subset of the functionality

of the general constraint described in the CL-HTTP WWW walker [MBV96]. The constraint function

can be arbitrarily expressive and can reference other existing constraints (which are managed by a simple

internment facility). This constraint system enables less technically pro�cient individuals to write lexical

feature constraints by applying simple combination rules to a library of existing constraints. The lexical

features can be dynamically rebound and modi�ed during runtime in response to the speci�c environment.

5 The Categorization Layer

The categorization layer provides code managing the actual assignment of a category labeling to a speci�c

document. There are two major kinds of objects handled in this layer.

1. Primitive classi�cation objects hold slots for a classi�cation algorithm (typically statistical) and a series

of symbolic rules.

These rules are implemented as constraints - and activate in response to the constraints being satis�ed.

The interaction of the symbolic rules and the classi�cation algorithm is controlled by precedence

constraints. These are somewhat more general than the other classes of constraints found in this

system, in that they compute an arbitrary function in response to the conditions being satis�ed and

hence do not necessarily have a binary output.

2. Higher-order classi�cation objects encapsulate a set of primitive classi�cation objects and precedence

constraints controlling the weighting of the �nal output.

This architecture encourages the use of hybrid classi�cation strategies - it facilitates the introduction

of a priori information for classi�cation. Furthermore, the abstraction barriers between di�erent segments

of the classi�cation object permit easy change of the speci�c classi�cation algorithm or the interaction of

a group of algorithms without impacting the a priori knowledge - which can be a signi�cant problem in

some algorithms where incorporating existing knowledge is a nontrivial and domain-speci�c endeavor. Also

note that this architecture supports both retrieval and categorization - retrieval is implemented simply by

3



performing categorization based on synthesized document data produced from input keywords or sample

document text.

6 The Storage Layer and Interaction Protocol

The storage module mediates the interaction between the lexical classi�cation layer and the categorization

layer. Presently the storage module is implemented as a object database storing appropriately indexed hash

tables, but the speci�c implementation is irrelevant as long as the following interaction protocol is obeyed.

The lexical classi�cation layer is permitted the following interaction with the storage module :

1. Storage of either arrays of feature-tokens or hash tables consisting of feature-tokens keyed by frequency

along with indexing feature and document.

2. Extraction of information about the magnitudes of category memberships and speci�c classi�cation of

a given document.

3. Extraction of numerical information about the stored document universe - e.g. number of documents.

The categorization layer is permitted the following interaction with the storage module :

1. Extraction of the full feature-token pro�le for a speci�c input document.

2. Extraction of token counts over documents speci�ed via constraint.

3. Extraction of token relevance metrics over documents speci�ed via constraint.

4. Extraction of numerical information about the stored document universe - e.g. number of documents.

5. Storage of categorization information for a given document.

Furthermore, both layers are permitted arbitrary storage of shielded data - data that will only be extracted

on the same side of the protocol.

7 Example

To illustrate and make concrete the discussion above, let us follow the progress of a document through a

system implemented on the DCS system.

1. A document is presented to the system for processing.

2. The document is tokenized into a sequence of words (punctuation removed).

3. A set of feature-token sequences are produced by the application of lexical feature objects to the raw

token sequence (one feature-token sequence corresponding to each lexical feature object).

4. These feature-token sequences are admitted to the storage module.

5. The categorization layer removes the present feature-token sequences from the storage module.

6. The active higher order classi�cation object is applied to the input data.

7. The classi�cation algorithm is run over the data and the symbolic rules are checked for activation.

8. In the course of this processing some token distribution information is extracted from the storage

module.

9. Precedence constraints are applied to mediate the output of the classi�cation algorithmwith the output

of the symbolic rules.

10. A categorization decision is output to the user.

4



8 Taxonomic Document Hierarchies

A special module has been implemented for use in situations where there is a preexisting set of categories

which are arranged in a taxonomic hierarchy. In this situation there are typically constraints between

di�erent categories (for example, categories higher in the hierarchy subsume lower categories) and it can

be advantageous to perform overall classi�cation by descending the hierarchy, making restricted decisions

at each stage. A general framework for storing this class of information is provided, as well as precedence

constraints which can activate distinct classi�ers at di�erent levels of the hierarchy. Further, there are

facilities provided to easily extract the speci�c inuences of a particular category and allow for the ordering

of category checking in order to maximize the pruning power of a given test.

9 Applications

The DCS has been tested on the corpus of White House released documents - employing a traditional

Salton classi�cation algorithm as well as a more sophisticated probabilistic inference technique, with lexical

features performing simple syntactic extractions based on the Wordnet lexicon. As expected, experiments

verify that richer lexical features and a priori information provide for improved classi�cation performance. It

was also interesting to note that this corpus provides an example of documents for which traditional keyword

classi�cation performs particularly poorly.

10 Conclusions

The DCS provides an architecture for research on automatic document classi�cation methods and for actual

deployment and use of a speci�c document classi�cation system. It facilitates rich lexical feature preprocess-

ing and hybrid classi�ers supporting the encoding of operator knowledge as symbolic rules. The constraint

formalism used broadly throughout the classi�er provides a means of controlling the interaction and extrac-

tion processes in a quanti�able fashion. Furthermore, the interaction protocol and associated abstraction

barriers enable rapid local experimentation to be done and independent development on the lexical feature

modules and categorization algorithms.

11 Acknowledgments

Thanks go to John Mallery for a great deal of useful discussion and suggestion, Roger Hurwitz for helpful

conceptual insights into the essentials of the classi�cation process, and Mark Nahabedian for technical

assistance and the original Wordnet interface code.

12 Bibliography

(M94) Mallery, J.C. "A CommonLisp Hypermedia Server," Proceedings of the First International Conference

on the World-Wide Web, Geneva: CERN, 1994.

(MVB96) Mallery, J.C. and A.J. Blumberg and C.R. Vincent. "A Constraint-Guided Web Walker for

Specialized Activities," - in these proceedings.

(S80) Salton, G. "Automatic Information Retrieval," Computer, 1980, 13(5):41-57.

(S91) Salton, G. "Developments in Automatic Text Retrieval," Science, 1991, 253:974-980.

5


