
A  Constraint-Guided  Web  Walker
for  Specialized  Activities

John C. Mallery, Andrew J. Blumberg & Christopher R. Vincent
Intelligent Information Infrastructure Project

Artificial Intelligence Laboratory
Massachusetts Institute of Technology 

Abstract:  A Web walker for the Hypertext Transfer Protocol (HTTP) implements a constraint posting
control architecture. The Web walker uses a declarative and extensible vocabulary of constraints to
characterize traversals ofWeb structures. Starting from a root resource, the walker recursively follows all
hyperlinks whose associated resource satisfies the constraints guiding the walk. Constraints are sorted
according to efficiency class before application to candidate resources. This constraint ordering conserves
computational and network resources. As the walker traverses the structure it performs operations that are
specified in a declarative and extensible action vocabulary. Taken together, a set of constraints and a set of
actions comprise anactivity, which can be named and reused.

Several Web-accessible applications use this constraint-guided framework:

Web Mapper:  Hyperlinks from a root uniform resource indicator (URI) are followed and
displayed in Hypertext Markup Language (HTML).

Web Document Locator:  A Salton-style statistical retrieval algorithm is applied to TEXT or
HTML documents, which are reported to the user when their score exceeds a threshold.

Web Archiver:  Regions of Web structure are traversed and transferred to a local disk drive.
Hyperlinks within the structure are remapped to preserve link structure in the new location.

The Web walker was implemented in Common Lisp as a facility for theCommon Lisp HTTP Server.

Keywords:  Actions, Common Lisp, Constraints, Constraint Posting, HTML, HTTP, Intelligent Agents,
Internet, Resource Discovery, Technology, Servers, Web Robot, Web Walker, World Wide Web.
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1 . Introduction

As the World Wide Web has grown, Web walkers have settled into two general applications: site
maintenance and high-volume indexing. In these roles, the walkers have been tuned for specific
activities that are applied uniformly over Web regions. This paper introduces a new
constraint-posting architecture for Web walkers that yields greater flexibilit y as it decouples control
of Web traversals from actions applied to Web regions. The goal is to facilitate reuse and sharing of
both control and action abstractions, and thus, to open the way for a new generation of
reconfigurable Web walkers that allow people or intelligent agents to ``power browse'' the Web.

The W4 Constraint-Guided Web Walker is a second generation Web walker intended for traversing
well-specified regions of the World Wide Web and performing any variety of actions. Control of
the walk is specified with an extensible vocabulary of constraints that limit enumeration of Web



resources. Actions applied to each accepted resource are specified by an extensible action
vocabulary. Conditional branching in constraints and actions makes possible adaptive responses to
Web topology. Most importantly, constraint and action abstractions enforce a separation of control
from action as they encourage reuse of control and action abstractions. The W4 Web walker
employs an architecture isomorphic to one originally developed for a graph walking system for
knowledge representation in the RELATUS Natural Language System (Mallery, 1991). W4 builds
on a basic HTTP client that is distributed with the Common Lisp Hypermedia Server (Mallery,
1994). W4 extends the abstractions of this server and basic client to accessing Web resources and
walking Web structures.

2 . Control

The W4 Web walker is an interpreter for graph structures comprised by resources accessible via the
Hypertext Transfer Protocol (Berners-Lee, et alia, 1996). A web traversal corresponds to the
application of an activity to a root uniform resource indicator (URI) (Berners-Lee, 1994;
Berners-Leeet alia, 1994). As hyperlinks are extracted from resources with relevant content types
-- such as documents using the Hypertext Markup Language (Berners-Lee, et alia, 1995) -- a
filtering process prunes out all candidates that do not satisfy formulae in the constraint language.
Actions are then performed on successful candidates. All the information required to guide a
particular traversal and perform actions is stored in a named activity object.

A . I nterpreter

An activity executes the following loop at each step in the traversal of a structure:

1. Enumerate URIs:  The body of an HTTP resource is scanned for URIs and these
are returned, possibly ordered by an application-defined predicate.

2. Apply Constraints:  Constraints are applied to filter enumerated URIs and
produce candidate URIs for actions.

3. Order Candidates:  URIs satisfying the constraints are inserted into a task
queue, possibly ordered according to an application-defined predicate.

4. Perform Actions:  Actions receive the opportunity to apply themselves to each
URI in the task queue.

B . Computational  Complexity

Walking a Web structure is a graph walk in Web space. A Web walk is isomorphic to a
tree descent, where starting from an initial node, inferiors are recursively enumerated (steps
1 and 2), and possibly visited (step 4). Although tree descent algorithms are exponential in
form, here constraints may bound the absolute number of URIs enumerated and visited.
Thus, the computational work required to complete a walk is given by the guiding
constraint formula and the actual topology of the region traversed. In practice, network
factors like HTTP response latency and transfer rates will contribute significant constant
factors to the time required to execute an activity at each visited node.

A good set of constraints narrows the scope of the Web walk to the URI's of interest and
produces a more tractable walk than might be the otherwise be achieved using conventional
Web walkers. Thus, the goal of constraint-guided Web walking is to devise a constraint
formula that generates the smallest, but compete, set of candidate URIs, and so, performs
its activity using the minimum computational and network resources.



As discussed below, declarative constraints can be ordered for application in ways that also
conserve computational and network resources as each ply selects candidate URIs

C. Constraint  Types

Constraints are instances ofconstraint types. Constraint types serve as templates governing
the behavior of constraint instances. They hold general-purpose functionality governing
their instances while their instances store specializing parameters.

There are two general classes of constraint types:

Ordinar y Constraint Types are the standard class of constraint type. They accept
arguments but none of their arguments can be other constraints.

Cir cumstance Constraint Types are special constraints that operate on
collections of constraints, and thus, they accept arguments which are constraint
structures. Among other things, these constraint types implement logical
operations and conditional branching over constraint structures.

D. Constraint Instances

Constraint instances are specialized into subclasses according to computational efficiency.
A sort based on efficiency subclass serves as a first-pass for ordering constraints. The
ordering is intended both to prune candidate URIs as fast as possible and to do so with
minimum computation and network access. The current set of efficiency classes for
constraints appear below in decreasing order of efficiency.

Context Constraints select a URI based on state information in the Web walker
without the need to first generate URI candidates. No network access is required.
The current depth of the walk is an example.

URI  Constraints involve comparisons between components of URIs or
predicates on their identity. These require generating URI candidates but they do
not involve further network access. In particular, they do not require lookups in the
Domain Name System. Constraints on the subdirectory of URIs are examples.

DNS Constraints require lookups in the Domain Name System for their
resolution. Constraints that limit the URIs explored to specific hosts are examples
because canonical host names are required to make reliable host comparisons.

Header Constraints require application of the HTTP HEAD method to the
resource for their resolution. Constraints on the content type of a resource are
examples.

Resource Constraints require the application of HTTP GET method to obtain the
content of the resource. Searching the body of a document for a substring is an
example.

E. Orderin g and Applying Constraints

Constraint sets bundle collections of constraints. Operations on constraints are typically
done via operations on constraint sets. Before a set of candidate URIs can be filtered by
the constraints of a constraint set, those constraints need to be ordered for computational 



efficiency. Constraint sets filter URIs as follows:

Order Constraints:  Sort all first level constraints in the constraint set so that the
most efficient constraints will be applied first. Ordinary constraints provide an
efficiency sort key directly. Circumstance constraints recursively examine the
constraints they contain to compute an efficiency sort key, which is the most
expensive constraint they scope.

Apply Constraints:  Once constraints are ordered from most efficient to least
efficient, they can be applied to filter enumerated URIs. By the time more costly
constraints are reached, more efficient ones have reduced the number of URIs
remaining under consideration.

Constraint sets are ordered only once; thereafter they can be applied to enumerated URIs
without further reordering because the efficiency characterization is independent of the
actual resources. Of course, if new constraints are added to a constraint set, it requires
reordering.

With the exception of resource constraints, constraint classes should almost always involve
algorithms with good complexity properties, typically algorithms linear in the number of
URIs, or better. In contrast, resource constraints may apply any algorithm to the resource
body, and consequently, may require secondary ordering to ensure that cheap resource
constraints prune down the candidate URIs to a minimum before more expensive ones are
applied. Additionally, the computational cost of resource constraints may depend on the
actual content of the resource. Neither secondary ordering of resource constraints nor
constraint ordering informed by their content has been implemented.

F . Search  Process

Web walking is a search process. The current W4 implementation examines a Web region
depth first with sorting of candidate URIs at each level, but not globally. Extensions for
breadth-first, best-first, and other global search options are in progress.

The current implementation runs in a single thread. Multiple cooperating threads exploring
different parts of the search space is also under consideration.

G. Defining  Constraint  Types

New constraint types are defined with DEFINE-CONSTRAINT-TYPE. In Definition 1, the
second argument provides the constraint efficiency class and the documentation for the
constraint. The third argument is the lambda list passed to the body during constraint
application.

(define-constraint-type
  header-robots-allowed
  (:header
    :documentation "Succeeds when robots are allowed on the URI host.")
  (constraint activity url)
  (ecase (robot-exclusion-status activity url)
    (:excluded nil)
    (:allowed t)

(:unknown

Definition 1: Defining a header constraint that only passes a URI when Web robots are
allowed on the site.



    (:unknown
      (let ((exclusion-url (robot-exclusion-url url)))
        (multiple-value-bind (headers status-code)
            (get-resource-headers activity exclusion-url)
          (case status-code
            (404 (note-robot-exclusion-status

   activity (host-object url) :allowed)
                 t)
            (t (note-robot-exclusion-status

 activity (host-object url) :excluded)
               nil)))))))

3 . Actions

Each activity contains a set of actions that are applied to URIs that have passed its associated
constraint set. Actions are instances ofaction types, whose behavior is parameterized by their
arguments. Two general classes ofaction types are currently defined:

Pri mary Actions are the basic kind of action. These perform some operation on a URI.
An example is an action that writes HTML describing the current URI to the client stream.

Encapsulating Actions surround primary actions and allow the action to specify when
and whether the encapsulated actions run. Examples include actions that wrap an HTML
environment around primary actions that generation HTML output for the client (e.g., 
enumeration).

A . Defining  Action  Types

Action types are defined using DEFINE-ACTION-TYPE. In Definition 2, the second
argument specifieswhether the action is a primary or encapsulating action. The third
argument is the lambda list passed into the body during action execution.

(define-action-type
  trace-headers
  (:standard
    :documentation "Traces the headers of accessed URIs.")
  (action activity url)
  (let ((*headers* (get-resource-headers activity url))

(stream (report-stream activity)))
    (when *headers*
      (fresh-line stream)
      (print-headers stream))))

Definition 2: Defining an action that writes the headers of the URI.

Although the constraints used by the activity to enumerate the Web region may cover the
correctresources, it may not make sense to apply actions to each URI. Consequently,
actions will often test the URI against their own set of constraints to select the correct action
to apply to a URI, or to take no action at all. In these cases, the scope of the Web walk can
be wider than the scope of particular actions.

4 . Acti vities



Activities collect a set of constraints to guide a Web walk and a set of actions that are performed on
visited URIs. A Web walk is initiated by applying the generic function WALK to a URI and an
activity. One can think of anactivity as a complex argument to a function, containing a number of
interrelated parameters that are invoked in different ways during a recursive process. Rather than
pass all these arguments separately, here they are bundled into named objects that can be reused. 

A . Defining  Activities

Activities can be defined with DEFINE-ACTIVITY or they can be created on the fly with the
macro WITH-ACTIVITY. In each case, textual specifications for constraints and actions are
passed to routines that allocate corresponding objects used during the walk. Definition 3 
shows how an activity is defined to display the headers of all resources within two
hyperlinks from a root URI. The action WALK-INFERIORS is a built-in action that
reinvokes the interpreter on the current URI to explore the next level of the search space.

(define-activity
  trace-walk
  :documentation "Traces the Web Walking activity."
  :constraint-set ((no-cycles) (depth 2)
                   (header-robots-allowed))
  :operator "JCMa@ai.mit.edu"
  :actions ((trace) (trace-headers) (walk-inferiors))
  :report-stream *standard-output*)

Definition 3:  Defining an activity to trace resources headers to a depth
of 2.

5 . Appli cations

Several simple applications were implemented to test the W4 framework for constraint-guided
Web walking. These applications are independent useful and comprise a start on a library of
actions.

A . Web  Mapper

A simple application walks Web structures under a set of constraints and displays the
resources traversed. This Web mapper is useful for viewing the link branching structure
associated with a Web document and for testing constraint formulae to see what web
region they select. This link mapper is invoked via a form over HTTP and reports its
results back to the Web Client. Figure 1 shows the form that invokes the Web mapper.
Some parameters for several standard constraints are captured via form input fields,
whereas more specialized constraints are passed in via the constraints field. In Figure 1, a
conditional constraint is used to suppress any HTML resources which were created before
January 1, 1996 (specified in seconds since 1900). Consequently, the results shown in
Figure 2 contain no HTML resources modified less recently than January 1, 1996.

Figure 1: Form to specify mapping a Web region.



Figure 2: Client displays results of mapping a Web region.



B . Web  Document  Locator

As an example of the kind of application that can be rapidly developed using this
web-walker, we developed a constraint-guided search tool. This tool performs a local
best-first search on the area of the Web satisfying the specified constraints. The search
employs the Salton (1980; 1991) algorithm for classifying documents according to
keywords; a document score is computed by summing normalized frequency counts for
the keywords. The algorithm is quite simple, as follows: given a URI, the corresponding
document is scored (if text) and returned if the score is above a threshold. Then, a score is
computed for all of the documents pointed to by links in the current document. These
scores are used to order the links for traversal. The process then continues until the
applicable section ofWeb-space is exhausted (typically by a constraint on the depth of the
search).

Figure 3: Form to specify a Salton-style search over a Web region.



One of the most important aspects to note about this application is the relative ease with
which it wasdeveloped. Leveraging the substrate provided by the cl-http server and the
elegant constraint structure of the walker described herein, the code for this application is
minimal beyond the actual scoring code and some pretty-printing to provide a forms
interface (see figures below). Using this substrate, it should be clear that arbitrary search
methodologies employing arbitrary document scoring algorithms can be implemented
rapidly and easily.

Figure 4: Client displays results of a Salton-style search over a Web region.

Later improvements to this application will enable better scoring techniques than the
Salton algorithm aswell as improving on the search control; because the descent sorting is
local, the current algorithm presumes a fairly high degree of informational coherence on the
site(s) being walked. It would be better to sort the links for descent based on the score of
the branch of the walk tree that link belongs to; a global best-first search.



C. Web  Archiver

The W4 Constraint-Guided Web-Walker can be configured for use as a World-Wide
Web archiving tool. When the walker processes a node, the archiver stores the URI content
on the local file-system, creating directories that mirror the URI hierarchy. HTML
documents are passed through a parser that remaps hyperlink information to the
file-system, allowing the user to navigate the structure with a conventional web browser.
Hyperlinks pointing to URIs on other hosts are preserved, allowing a seamless transition
back to the web when a resource is not mirrored locally.

The archiver activity is guided by a fairly simple set of constraints, consisting of a
URI-host, allowed content-types and a maximum depth. When mirroring a subtree on a
large site, a maximum depth setting is important since documents often reference the top
node of a site. Given an initial pathname on the local file-system, the archiver creates a
directory whose name is a unique representation for the target host. The URI hierarchy is
then mirrored beneath this directory.

The data from a cached HTML document is passed through a stream-based
parser/remapper beforebeing output to disk. If a BASE element is found, its original value
is stored and a local file pathname put in its place. If no BASE reference exists, one is
created. Since most browsers fail to correctly parse a file reference in a BASE element, the
pathname can only be specified up to the directory representing the remote host. Any path
information from the original BASE element must added to each individual hyperlink
reference. If an absolute URI reference points to a location on the host being walked, it is
parsed to a relative URI. If it points to a location on another host, the full URI is retained.
Once the BASE element and all hyperlink references have been remapped in this manner, a
HTTP browser can successfully navigate the file structure on disk.

An archiving walker has several immediate applications:

Resource Retrieval: The archiver can be configured to fetch particular types of
resources from a host, such as images or audio files.

Disconnected Web for Mobile Computing:  The archiver provides the abilit y to
archive a region of the web, and then. browse it while disconnected from the
network.The archiver maintains a hash-table of document headers, so that
individual documents can be refreshed as needed when a network connection is
reestablished.

Historical Snapshots:  Another application is historical archiving of web sites.
This is especially important for transient sites, such as those containing political
information orpertaining to a particular event, as well as sites with a high
turn-over.

Asynchronous Notification:  By observing changes in resource modification
dates and comparing sources to an archived copy, the archiver could also provide
an altering service for resources of interest.

6 . Future Work

The present implementation lacks a number of desirable features that will be incorporated over the
coming months.



Search Control:  Activities will be able to select and fully customize the search process
used to expand the Web structure.

HTTP 1.1 Compatibilit y:  The base client will be enhanced to support persistent
connections and other aspects of HTTP 1.1 that improve performance and reduce
consumption of network resources.

Multi- Threading:  Activities will be able to specify regimes to partition the search space
among several cooperating threads.

Robust Operation:  The network is an unreliable place and there are many HTTP
implementations ofdubious quality, not to mention bad HTML. Exception handling will
be extended to make W4 robust in the face of ubiquitous error.

Libraries:  As the user community develops, we hope that shared constraints and actions
can be collected and distributed with W4.

7 . Conclusions

A flexible constraint-posting architecture for graph walking from the field of knowledge
representation hasbeen transferred to the domain of Web walking. The architecture defines an
interpreter that accepts declarative constraint formulae which it uses to enumerate URIs to which
declarative actions are applied. The constraint abstraction makes possible sorting of constraints
according to their computational efficiency. This not only allows the Web walker to proceed at a
faster pace, but more importantly, it allows irrelevant structure to be ignored. Declarative actions
allow multiple tasks to be performed in single walks, which thereby reduces utilization of network
resources. Both constraints and actions can be collected in named activities that can be recalled
when needed again.

W4 provides an environment for creating and reusing abstractions that describe regions of the
World Wide Web and perform actions over them. The initial vocabulary provided with W4 can be
extended to support intelligent agents performing resource discovery on the Web.

8 . Availabilit y

The present implementation is about 3000 lines of Common Lisp code, not including the
applications. It runs on the same platforms as the Common Lisp Web Server. The source code
will be distributed with the web server in future releases.
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11. Appendices

These appendices describe the series of constraints and actions that have been defined for W4 and
used in some examples described in this paper. Each entry gives the name of the constraint or
action, its type in square brackets, and any arguments that it accepts.

A.  Predefined  Constraints

And [Circumstance-Constraint]:  (&REST CONSTRAINTS) 
Succeeds if all of its arguments succeed, otherwise fails. The arguments
are any number of constraints or constraint sets and are evaluated left to
right.

Depth [Context-Constraint]:  (DEPTH) 
Succeeds while recursive Web walking is less than or equal to DEPTH.

Header-Content-Length [Header-Constraint]:  (COMPARATOR SIZE) 
Applies COMPARATOR to the CONTENT-LENGTH and SIZE.
COMPARATOR must be prepared to handle a null
CONTENT-LENGTH.

Header-Content-Length-Upto [Header-Constraint]:  (SIZE &OPTIONAL
(DEFAULT T)) 

Succeeds if the content-length is less than or equal to SIZE. When
content-length is unavailable, it succeeds when DEFAULT is non-null,
otherwise fails.

Header-Content-Type [Header-Constraint]:  (CONTENT-TYPE-SPEC) 
Succeeds when the content type for the resource matches
CONTENT-TYPE-SPEC. Returns NIL if the CONTENT-TYPE is not
available.

Header-Expires [Header-Constraint]:  (COMPARATOR UNIVERSAL-TIME) 
Applies COMPARATOR to the EXPIRES date and



UNIVERSAL-TIME. Returns NIL if the EXPIRES is not available.
Header-Last-Modified [Header-Constraint]:  (COMPARATOR UNIVERSAL-TIME) 

Applies COMPARATOR to the LAST-MODIFIED date and
UNIVERSAL-TIME. Returns NIL if LAST-MODIFIED is not
available. COMPARATOR is a Lisp function.

Header-Predicate [Header-Constraint]:  (HEADER-KEYWORD PREDICATE) 
Applies PREDICATE to the parsed value of header-keyword and
whether the header was available.

Header-Resource-Age [Header-Constraint]:  (MINIMUM MAXIMUM) 
Succeeds when the resource age is between (or equal to) MINIMUM
and MAXIMUM. Fails if LAST-MODIFIED header is not available.
MINIMUM and MAXIMUM are universal times.

Header-Robots-Allowed [Header-Constraint]:  () 
Succeeds when robots are allowed on the host in URI.

Header-Server [Header-Constraint]:  (PREDICATE) 
Applies PREDICATE to the SERVER header. Returns NIL if the
SERVER is not available.

I f [Circumstance-Constraint]:  (ANTECEDENT CONSEQUENT ALTERNATE) 
This constraint allows conditional branching in the constraint structure. If
ANTECEDENT succeeds, CONSEQUENT is applied, otherwise
ALTERNATE is applied. The success or failure of CONSEQUENT or
ALTERNATE determine the overall success or failure of the expression.
Each of these components can be either a single constraint or a constraint
set.

No-Cycles [URI-Constraint]:  () 
Succeeds for URIs that have not been walked during in the current
activity.

Not [Circumstance-Constraint]:  (CONSTRAINT-SET-OR-CONSTRAINT) 
Succeeds if its argument, a constraint or constraint-set, fails.

Or [Circumstance-Constraint]:  (&REST CONSTRAINTS) 
Succeeds if any of its arguments succeed, otherwise fails. The arguments
are any combination of constraints or constraint sets. They are evaluated
left to right.

Resource-Search [Header-Constraint]:  (SUBSTRING) 
Succeeds when SUBSTRING is found in the content of resource. Fails if
the content is not text. This is case insensitive.

URI -Class [URI-Constraint]:  (CLASS) 
Succeeds when the URI is of class CLASS.

URI-Directory-Path [URI-Constraint]:  (DIRECTORY-PATH) 
Succeeds when the URI directory components are exactly the same as
DIRECTORY-PATH. DIRECTORY-PATH is a list of directory
components. This is case insensitive.

URI-Extension [URI-Constraint]:  (EXTENSION) 
Succeeds when extension component of URI is EXTENSION. Fails for
URIs that are not objects, e.g., paths. This is case insensitive.

URI -Host [Dns-URI-Constraint]:  (HOST) 
Succeeds when the URI refers to the host HOST. HOST can be a list of
primary HOST domain names.

URI-Name [URI-Constraint]:  (NAME) 
Succeeds when name component of URI is NAME. Fails for URIs that
are not objects, e.g., paths. This is case insensitive.

URI-Parent-Subsumed-By-Directory-Path [URI-Constraint]:  
(DIRECTORY-PATH) 

Succeeds when the directory components of the URI's parent are
subsumed by DIRECTORY-PATH. DIRECTORY-PATH is a list of



directory components.
URI -Port [URI-Constraint]:  (PORT) 

Succeeds when the URI refers to the port PORT. PORT can be a list of
port numbers.

URI-Referrer-Host [Dns-URI-Constraint]:  (HOST) 
Succeeds when the parent URI that refers to URI refers to the host HOST.
HOST can be a list of primary HOST domain names.

URI-Satisfies [URI-Constraint]:  (PREDICATE) 
Applies PREDICATE to the URI object.

URI-Scheme [URI-Constraint]:  (SCHEME) 
Succeeds when the URI refers to the scheme SCHEME. SCHEME can
be a list of URI schemes.

URI-Search [URI-Constraint]:  (SUBSTRING) 
Succeeds when SUBSTRING is found anywhere in the fully qualified
URI namestring. This is case insensitive.

URI-Subsumed-By-Directory-Path [URI-Constraint]:  (DIRECTORY-PATH) 
Succeeds when the URI directory components are subsumed by
DIRECTORY-PATH. DIRECTORY-PATH is a list of directory
components. This is case insensitive.

B.  Predefined  Actions

Html-Enumerating-I tem [Encapsulating-Action]:  (STREAM) 
An action that wraps a single enumeration of an item on STREAM.

Html-Force-Output [Action]:  (STREAM) 
Forces output on an HTML stream.

Html-Show-URI-Overview [Action]:  (STREAM) 
An action that overviews the URI in HTML on STREAM.

Html-Trace [Action]:  (STREAM) 
An action that traces the activity of the Web walker and outputs HTML on
STREAM.

Html-Wit h-Enumeration [Encapsulating-Action]:  (STREAM STYLE) 
An action that wraps the enumeration of items on STREAM according to
STYLE. STYLE can be :ENUMERATE :ITEMIZE :PLAIN :MENU
:DIRECTORY  :DEFINITION

Html-Wit h-Paragraph [Encapsulating-Action]:  (STREAM) 
An action that wraps a paragraph on STREAM.

Html-Write- Headers [Action]:  (STREAM) 
Write the headers formatted verbatim.

Salton-Check-URI [Action]:  (THRESHOLD WORDS WEIGHTS STREAM) 
Action for returning a node if its score is above the threshold.

Trace [Action]:  () 
An action that traces the activity of the Web walker.

Trace-Headers [Action]:  () 
An action that traces the headers of URI accessed by the Web walker.

Walk- Inferiors [Action]:  () 
Primary action for walking the inferiors of a URI.

Walk-Salton-Sorted-Inferiors [Action]:  (WORDS WEIGHTS) 
Walks sorted inferiors.

Walk-Sorted-Inferiors [Action]:  (PREDICATE) 
Primary action for walking the inferiors of a URI.


