6.834J Final Project Report

Coordinating Specialized Robots with a Market-based Approach

Gabe Reinstein and Austin Wang

December 10, 2002

Introduction
2
Background: The Market-Based Approach
2
Motivation: What was missing from the previous research
3
Hypothesis
3
Experiment
4
Overview
4
Implementation Overview
6
Simulation
6
Board
7
Board Objects
7
Robots
7
Results
8
Discussion
10
Contributions
11
References
12

Introduction

This paper describes an experiment we performed to evaluate the nature of specialization in a multi-robot coordination task governed by a market-based architecture. First we will discuss the background and motivation for the experiment; then, we will explain our experimental hypothesis; next, we will describe the experiment; and finally, we will present our results and discuss them.

Background: The Market-Based Approach

There are many situations in which it is important to coordinate multiple robots. Players on a robot soccer team must work together; a set of agricultural robots need to communicate with each other so that all the land is watered or harvested correctly; and a team of planetary rovers should coordinate so that they don’t all explore the same territory.

There are a number of different approaches to coordinating multiple robots. One set of methods uses centralized planning to coordinate the robots. All the robots communicate sensor data to the central “leader,” who calculates an optimal plan and sends commands out to the rest of the robots. The advantage of these approaches is that robots can be coordinated very efficiently. Unfortunately, this planning is extremely computationally intensive (and slow), this requires a very high communication load, and if the “leader” fails, the whole system breaks down. Another way to coordinate robots is to use a decentralized approach. In these systems, each robot is free to make its own decisions based on the information that it senses locally. The advantage of decentralized systems is that they are very robust—if one robot fails, the rest of the system keeps working—they can respond quickly to changing environments, and they don’t require much computation or communication. The major disadvantage is that the resulting “plans” are often highly sub-optimal, with very little real coordination going on.

As a response to these problems, researchers proposed a market-based approach to multi-robot coordination (Dias 2001). This approach is based on the economic idea of a free market: robots work to maximize their individual profit by maximizing revenue (gained by completing tasks successfully) and minimizing cost (reducing time taken or distance traveled). Robots are free to negotiate with each other to complete tasks. If one robot can complete a task more efficiently than another robot, it can bid for the right to complete the task. If the bid is higher than what the other robot would have profited by completing the task itself, it can auction off the task, the result being that the more efficient robot ends up doing the work. The net result of this system is that by acting at a local level to maximize profit, the robots create a solution that is globally very efficient. This approach has the same advantages of the distributed methods—robust, quick to respond to changes, low communication load, etc.—but can create solutions that are far closer to optimal.

There is much more to say about the market-based approach, and specifically about its application to multi-robot exploration. For more information, please refer to our Advanced Lecture Tutorial, entitled “Multi-Robot Coordination Using a Market-based Approach.”

Motivation: What was missing from the previous research

Previous research papers about market-based multi-robot coordination make a number of claims about what is possible with such systems, but very few are backed up by experiment, either in the real world or in simulation. One such claim is about specialization.

In a multi-robot environment, it is often far better to have a number of specialized robots than one general-purpose one (in fact, this might be the reason to have multiple robots in the first place). Making a robot that can move quickly, perform complex sensing, dig holes, and lift heavy objects is likely to be difficult and error-prone, while it is relatively simple to make one fast robot, one sensing robot, one digger robot, and one lifting robot. But, given that each robot has a specialty—or even that different robots have different qualities and attributes—how can this be taken into account for coordination? With a central planning system, it becomes very complicated to not only plan the best moves for a series of robots, but also to take into account that this one is faster than that one, or that this one needs to dig a hole so that that one can perform a sensing operation.

The authors of the papers claim that correct specialization will fall naturally out of the market-based approach. That is, when robots are working to maximize individual profits, and they have the ability to negotiate with each other over tasks, the skills of each robot will be utilized appropriately. Robots good at lifting will be able to make the highest bids for lifting tasks, and robots good at hauling will make winning bids for hauling tasks. The result should be that specialized robots end up doing their specialty, resulting in good global efficiency. This mechanism takes place without explicit planning or explicit attention to attributes, and is entirely local: the specialization is governed only by the fact that specialized robots will have higher expected profit for their appropriate tasks, and thus will be able to make higher bids.

Unfortunately, this claim is never substantiated or demonstrated experimentally. We decided to find out if the specialization mechanism really works as predicted.

Hypothesis

Our experimental hypothesis was simple: in a multi-robot coordination task with two different kinds of robots, each robot type having different abilities and specialties, the robots will tend to coordinate in such a way that each robot does what it is good at.

Further, we believed that the more the robots specialized according to ability, the more efficiently the task would be carried out overall—and, at the extreme case, when robots were not allowed to coordinate at all, we believed that the overall performance would be very inefficient.

Experiment

Overview

The goal of the simulation was to provide a simple multi-robot environment where specialization could arise. The environment consists of a two dimensional grid, where robots are free to move about. Treasures are randomly placed on the grid; when a robot finds a treasure, it auctions the task of recovering it to other robots, the highest bidder wins the right to the task. The goal of the robots is to discover these treasures and return them to base as cost-efficiently as possible.

To allow for specialization, there are two types of robots with different abilities. The scouts have good treasure sensing abilities, and can move quickly when not carrying any treasure, but slow down a lot when they’re carrying treasure. The haulers have poor sensing and move relatively slowly, but aren’t slowed by treasures. If specialization did occur, we would expect the scouts to discover the treasures, and the haulers to bring them back to base. The following screen shot shows a typical board.

[image: image1.png]

Figure 1 - Typical Board; T denotes treasure, h denotes hauler, s denotes scout, and B denotes the base

Simulation

During run time, the robots can be doing one of three things: exploring, harvesting treasure, or returning treasure. During exploration, the robots roam about aimlessly until they sense a treasure, at which point, they carry out a global auction involving every other robot. If a robot wins the auction, it goes into harvesting mode, otherwise, it continues exploring. During harvesting, it takes the shortest path to the treasure; once it reaches it, the robot picks up the treasure and goes into return mode. When in return mode, the robot heads straight for base, but at its laden pace. Once it reaches the base, it drops off the treasure and goes back to exploring.

Robots do not participate in auctions while harvesting and returning treasures. This simplified approach ensures that once a treasure is auctioned off, it is returned to base. However, there is a performance tradeoff since it becomes impossible to queue a robot for multiple treasures. There are instances when the best robot for the task is harvesting or returning treasures, and due to the design of the system, the task will be assigned to a less optimal robot. Nonetheless, the condition only happens when there is a severe lack of resources (high treasure to hauler ratio).

Cost Function

The cost function for a certain task is defined as the expected number of turns it would take to complete the task. Each robot can calculate this based on their speeds and the distances to the treasure and to the base. The revenue of each treasure is identical, and the profit from returned the treasure is simply cost subtracted from revenue.

Specialization

If specialization works according to the hypothesis, scout robots will find most of the treasures due to their superior unladen speed and sensing range, and will tend to auction off the tasks of harvesting the treasures to haulers, which can move the treasures more efficiently due to their higher laden speed.

Implementation Overview

The implementation was written in Java, and consisted of five classes: simulation, board, boardObject (abstract), robot (abstract), scout, hauler, and treasure.

The Simulation is carried out at fixed increments of turns; at each turn, the robots would carry out their task for that turn horizon. This is repeated until all the treasures have been recovered.

Simulation

The simulation class is responsible for the GUI and high level functions, including creating the board, and collecting data. During a step-by-step simulation, the simulation calls the takeTurn method on the board at each step, until the done method in the board class returns true. It then prints out or renders the board on the GUI if “print out” or “render” is selected. When the simulation is complete, it collects statistics on the number of turns taken and the rate of specialization from the board.

In normal simulation mode (as opposed to step-by-step), the simulation is run to completion for twenty times, and raw data for the twenty runs is printed out for importing into Excel.

[image: image2.png]Market-based Multirobot Coordination Simulation

Seings

{_Create |Created bo...

% Render

Board Y

#Treasures Board X

Haulers

#Scouts,

Simulate

Step

Print Out

15 15 =

50

Board

hoh 0 o

Base [

[s.s]

Figure 2 - screen shot of simulation GUI
Board

The board handles the creation of the robots and treasures and placing them on the grid. It also keeps track of the high level state of the simulation, such as the status of the treasures and the number of turns taken so far. The done method checks that all the treasures have been returned to base, if this is true, the board counts the number of treasures that were recovered through specialization.

During board creation, the board is given the number of scouts, haulers, treasures, and the dimensions of the board. It creates a grid of the specified dimension and sets the base location to be the middle coordinate. Robots are then randomly placed on the eight squares around the base, and treasures are placed randomly all over the board. Nothing is placed on top of the base.

The takeTurn method cycles through all the robots and calls takeTurn on them individually.

Board Objects

Board objects are objects that can be found in the grid: treasures, robots. A base is not a board object and is simply represented by a set of coordinates. Each board object has a location and a unique ID. The design is extensible to allow for new types of robots or new objects such as obstacles.

Treasure

Each treasure has an owner and a finder. The owner is defined as the robot that returns the treasure back to base, and the finder is defined as the robot that first discovers it. Each treasure is also assigned a value, from which a robot would use to evaluate revenue. Our particular simulation involved treasures of the same value, but the simulation can also be extended to different valued treasures.

The finder and owner are used in determining specialization, if the finder is a scout, and the owner is a hauler, then the instance is counted as specialization.

Robots

The Robot class (and its subclasses, Scout and Hauler) represents the robots on the board. It is responsible for maintaining the state of each robot and performing its actions in the game. Each robot has a “currentTask” that keeps track of its state in the game, a field for holding treasure (which is null when the robot has no treasure), and a set of attributes: “sensingRange,” the radius of squares around the robot in which it can sense treasure; “unladenMoveProbability,” which determines the robot’s speed when it is not holding anything; and “ladenMoveProbability,” which determines the robot’s speed when it is carrying treasure. These attributes are the only differences between scouts and haulers, and so the Scout and Hauler classes merely fill in these values so that the robots can be instantiated.

Movement is handled probabilistically. The board grid and the time scale are discrete, and robots can only move one square at a time (horizontally or vertically), but they need to have different relative speeds. So, on any turn, a robot “rolls the dice” to determine whether or not it can move by a square. Over time, robots with higher movement probabilities will move faster (at least, they will tend to move farther in a given number of turns). Scouts have a higher unladenMoveProbability than haulers, but haulers have a higher ladenMoveProbability than scouts—therefore, scouts are faster explorers, but haulers are faster when carrying treasure.

Additionally, scouts have a higher sensingRange than haulers, and so in addition to moving faster while exploring, scouts can see a wider area and are thus more likely to find treasures.

The most important method in the Robot class is takeTurn(), which is called for each robot on every turn of the game and performs one time-step worth of actions. The action carried out in takeTurn() depends on the “currentTask” of the robot. If the robot is heading towards a treasure (“harvest” task), it tries to move in the direction of the treasure or picks the treasure up. If it is heading towards base with a treasure in hand (“return” task), it tries to move in the direction of the base, or drops the treasure off if it has reached the base. Otherwise, if it is in the “explore” state, the robot first tries to make a move. It moves in whatever is its “currentDirection,” and changes this direction randomly with some (small) probability. This ensures that robots will tend to move in random directions but won’t keep oscillating back and forth in a small area. After this potential move (governed by the fact that moves only happen with some probability), the robot performs a sensing operation. If it doesn’t find anything, it waits until the next turn. If it does find a treasure, it calls an auction.

The goal of an auction is to let the robot that can harvest the treasure most efficiently be responsible for the task. When one robot holds an auction, it sends a bid request (requestBid()) to each robot in the game. Robots that are already occupied with harvesting treasures ignore the request. All other robots evaluate their expected profit from harvesting that treasure (the revenue of the treasure minus the expected time it will take them to get to the treasure and then to base, which is based on their movement probabilities and the distances involved), and respond to the auctioneer with a bid reflecting their marked-up expected profits. The reason for the markup is that the bid offered is the amount a robot will pay for the right to perform the task—it must be discounted by some amount so that the profit they actually make on the task is more than the amount they paid to the auctioneer. The auctioneer looks at the highest bid, and if it is more than it expects to make itself by returning the treasure to base, it sells the task to the highest bidder and begins exploring (the high bidder is notified, and immediately changes its “currentTask” to “harvest”). If the robot decides it can earn more by performing the task itself, it switches itself into “harvest” mode. The result of this auction, at least in theory, is that the robot that can harvest the treasure most efficiently gets to do so.

Results

We collected two sets of data for each trial: the percentage of treasures that were collected through specialization, and the number of turns taken to recover all the treasures. The numbers are averaged over 20 trials. The variables included board area, number of treasures, number of scouts and haulers, and the various attributes of the robots.

We found that specialization is directly correlated with two variables, how specialized the robots were in terms of their attributes, and the ratio of haulers to treasures.

Table 1 shows the amount of specialization given different attributes of the robots. In each of those the simulations, there were 8 treasures, 4 scouts, and 4 haulers; the board area was 10 by 10. The higher “sense” is, the better the sensing radius, and the higher “laden” and “unladen” are, the faster the robots move under those conditions.

You can see that as the robots become more specialized to doing a certain task, they are automatically assigned those tasks more frequently, which goes to support our hypothesis.

Table 1 – Specialization with respect to attributes

	Scout
	Hauler
	Averages over 20 Trials

	Sense
	Laden
	Unladen
	Sense
	Laden
	Unladen
	Specialisation

	2
	0.5
	0.5
	2
	0.5
	0.5
	0.00%

	3
	0.25
	1
	1
	0.5
	0.5
	5.00%

	4
	0.1
	1
	1
	0.75
	0.75
	55.40%

Table 2 demonstrates how the amount of specialization changes with number of haulers. The amount of specialization grows with the number of haulers and reaches a maximum when the number of haulers is roughly equal to the number of treasures. The phenomenon is due to the limitation of our system, where robots cannot respond to auctions during harvest and return stages. Hence, when all haulers are occupied, the task of returning a treasure will be assigned to a scout by default.

This is not an inherent weakness in the market-based algorithm, and can be accounted for in more advance implementations, by having robots keep a queue of multiple tasks.

Table 2 – Specialization with respect to number of haulers

	Board Size
	Board Objects
	Averages over 20 Trials

	x
	Y
	area
	Treasures
	Scouts
	Haulers
	Specialisation

	25
	25
	625
	50
	40
	10
	39.90%

	25
	25
	625
	50
	25
	25
	70.50%

	25
	25
	625
	50
	10
	40
	94.5%

Tables 3 and 4 aims to compare the efficiency of the treasure hunt with and without auctioning. Both sets of data are taken from a 25 by 25 board, and the robots are identical in each simulation.

We can see that auctioning reduces the number of turns required in every case, and by more than 50% in certain cases.

Table 3 also shows that the number of turns taken is negatively correlated with the amount of specialization, which shows that specialization improves on the efficiency the treasure hunt.

Table 3 – with auctioning

	
	
	
	
	Averages over 20 Trials

	Scout
	Hauler
	Treasure
	Board area
	Specialisation
	Turns Taken

	25
	25
	50
	625
	70.50%
	269.2

	10
	40
	50
	625
	94.50%
	130.35

	40
	10
	50
	625
	39.90%
	307.4

Table 4 – without auctioning

	
	
	
	
	Averages over 20 Trials

	Scout
	Hauler
	Treasure
	Board area
	Specialisation
	Turns Taken

	25
	25
	50
	625
	0%
	318.55

	10
	40
	50
	625
	0%
	277.5

	40
	10
	50
	625
	0%
	337.85

Discussion

The data supports our hypothesis that under the market-based approach, robots will tend to specialize in tasks they are good at, and the efficiency will also be correlated with the amount of specialization. Furthermore, efficiency is greatly reduced without auctioning.

We also found that a constrained resource could reduce the amount of specialization and reduce efficiency. This is due to a particular limitation of our simulation and is not an inherent weakness of the market-based approach. However, we did encounter a potential weakness in the approach by introducing different types of robots.

Our assumption that all robots are able to communicate with one another during auctions is an unrealistic one. Global communication was not an issue in the prior implementation by Zlot because there was only one type of robot, which meant that the highest bidder for a task is usually close to the treasure, and the robot holding the auction. However, with multiple robots and larger map sizes, the optimal robot for the task may be outside of the communication range. Task will be assigned to less than optimal robots, and thereby reducing the efficiency of the system. It would be interesting to investigate the extent to which this affects the performance of the approach.

Contributions

There are two main contributions of our work. First, we created a simulation environment that allows market-based multi-robot coordination ideas to be tested and explored. Although we implemented a treasure hunt scenario with only two specialized robots, the simulation environment is extendible to other types of robots, more complex environment, different game roles, and so on.

Second, we showed that specialization does arise naturally in a market-based coordination environment when there are robots with different attributes. This point had been proposed in previous papers, but our analysis, based on simulation, demonstrates this to be the case.

References

Dias, M. B. and Stentz, A. 2001. A Market Approach to Multirobot Coordination. Technical Report, CMU-RI-TR-01-26, Robotics Institute, Carnegie Mellon University.

Zlot, R. et al. 2002. Multi-Robot Exploration Controlled by a Market Economy. IEEE.

PAGE
1

