Biologically Inspired Machines: Mapping and Localization

Itamar Kahn, Yuval Mazor

Massachusetts Institute of Technology, Cambridge, MA

December 11, 2002

Abstract – In the paper we discuss techniques to add biologically inspired methods to an implementation of a robot running concurrent mapping and localization (CML). The two major methods are: (1) a solution to the relocation problem using geometric constraints, joint-compatibility, and random sampling, and (2) dynamic memory characteristic including both a limited number of feature storage as well as a feature decay function. These innovations mimic human memory behavior and limitations, making the robot more robust, capable of handling large feature-laden environments, as well as the relocation problem. We demonstrate experimentally the benefits of the biologically inspired enhancements with experiments in a simulated environment.
1. Introduction

The task of building a robot capable of concurrently mapping and localizing (CML) in an unexplored and dynamic environment is an outstanding problem in the field of robotic autonomy. Although there are implementations of CML that have solved the problem, most have relied on small environments or time and memory constraints that are not be representative of the real world. For example, robots using an Extended Kalman Filter (EKF) are able to correctly perform CML, but are unable to handle the Relocation Problem, when the robot is kidnapped and moved and must then continue running CML on the original map. Different implementations that seek to handle Relocation often cannot work in real-time, or rely on an extensive memory, limiting the size of the map that they can handle [1].

While most research to the problems in CML lies in further enhancements of the existing algorithms, this paper looks for inspiration in the natural world. Human mechanisms for handling the relocation problem [2] and limited memory capacity [3] are real-time functions. These models of human memory can be drawn analogously into an existing implementation of CML, and provide the robustness that is currently lacking.

This paper describes an existing implementation of Simultaneous Localization and Mapping (SLAM) that is capable, but fundamentally limited. The existing implementation can only handle a small number of features in the environment and is unable to handle the relocation problem. The two biologically inspired enhancements to the SLAM implementation provide the following new capabilities:

· Handle the relocation problem. If the robot is abruptly moved to a new place in the map, it undergoes a real-time, sample-based search of its map to determine its new position and orientation before continuing its plan. This mirrors the biological recognition system that allows humans to recognize and readjust to places they have previously seen.

· Handle larger environments with memory management. As the robot explores, certain stored features in the map will slowly decay until they reach a threshold, when they are forgotten. As a result, the robot keeps sparser maps of areas it has not seen in a while, and more detailed maps of more recent areas. This allows the robot to maintain old information, while still adding to the map. This mirrors the biological memory storage system where humans remember old facts, but not with the same depth and richness as more current information.

Using these two biological systems, a simulated running of the enhanced SLAM implementation is able to handle being kidnapped as well as environments with many times more features.

This paper will detail both the original SLAM implementation, both biological improvements and experimentation that shows the added robustness of the new features. Section 2 explains the SLAM implementation, including how observations were made and stored, as well as how it solved the basic CML problem. Sections 3 and 4 give detailed descriptions of the Recognition and Memory Storage enhancements described briefly above. Section 5 presents our experimental results after running the robot on a simulated environment with and without the biological enhancements.

II. SLAM Implementation

The initial SLAM implementation used a system of linearized stochastic mapping to handle the problem of CML [6]. The robot was given a movement plan for exploration and at each step along the way, took observations of the environment with a limited range scan. Observations were matched to features and the robot updated its map and localized itself using a Kalman Filter.

The actual task of observation and preprocessing the feature information is dependent on an artificially simplified simulation environment. Each feature is given a unique identifier. When the robot scans for observations, it measures the distances to a set of features within its scan range, with some arbitrary error adjustment to simulate real-world noise. However, it also receives the unique identifier of each feature, which is unrealistic in a real world setting, but adequate for the simulated intents of this SLAM implementation. The robot compare the feature ID against its stored map, and determines whether or not it is a new feature. If it is in fact a new feature, it is added to the map. If it is not, the robot has to update the map.

The heart of stochastic mapping lies in the second stage where the features are actually processed. This implementation relies on a Kalman Filter Update to handle the necessary computation of updating the map and localizing the robot. The KF approach relies on creating a Gaussian distribution of the predicted state of the environment. Using the measurements from a feature observation, a Bayes filter is used to correct the prediction and update the state [6].

 Using a simple loop of motion, prediction, observation, update, the SLAM algorithm is able to successfully map out a feature-laden environment. Given the random observation errors, the first-pass map is within 2 standard deviations of the correct map.

III. Recognition

This section describes a memory recognition system that will allow the existing SLAM implementation to handle the relocation problem, when the robot is moved in an unknown region of the map. Since the existing SLAM implementation relied on feature identification, which makes the relocation problem trivial, we ignore feature ID’s when observing and processing features in memory recognition. Instead we give additional quantitative value to the feature, an angle of orientation and length that is observable with a degree of error comparable to those in the distance errors. This additional feature information is necessary for narrowing down the choice of possible observable features during recognition.

The recognition technique relies on searching the geometric constraints of the observable features to determine the most likely position and orientation of the robot. In a standard stochastic mapping this search involves matching each observation to a possible feature, and searching through all combinations of observation-feature pairs for the optimal fit. This technique is time inefficient as searching through the feature space is exponential in the number of measurements. This paper draws on a new technique to minimize the search time by limiting the size of the search tree [6].

A. Geometric Constraints

In order to reduce the size of the observation-feature search tree, we use three different types of geometric constraints to determine the likelihood of an observation-feature pairing. The first of these constraints is a unary test of the feature’s angle of orientation with respect to the observed measurement of that angle. We determine the stochastic parameter vectors and a correlation matrix for the feature and the observed angle. Then, using a chi square test for statistical significance we can decide if the chosen pair should be considered or ruled out.

The second geometric constraint we consider is a binary test comparing the relative geometry’s between two feature-observation pairs. In this case we create a vector of the difference between the distances of the features and the observed measurements. Using the corresponding correlation matrix as before, we arrive at a bound of probability for the chi square test.

The final constraint is the joint compatibility test. This test checks the geometric relationship among all the feature-observation pairs. The intent behind this test is to rule out the cases where all subsets of two pairs pass the binary test, but the set, as a whole is geometrically infeasible. The joint computability test computes the chi square test on all the combined pairs. This test makes sure that the inclusion of spurious observations are minimized, since hypotheses with spurious observations will not pass the statistical test.

B. Branch & Bound

Using the three geometric constraints, we implemented a recursive branch and bound search algorithm that returns the best set of feature-observation pairs. The joint computability branch and bound (JCBB) algorithm works as follows:

· If all observations have been mapped:

· Count the number of feature-observation pairs in the current set, H, and in the previous best set, B.

· Designate the set with more pairs as the new B.

· If the current observation, o, has not yet been mapped to a feature:

· For every feature, fi, in the map:

· If unary(o, fi) AND joint_comp([H, fi]:

· JCBB([H fi])

· If no feature could be mapped to o AND there are more pairs in H than in B:
· JCBB({H 0]) //(spurious observation)

Running this algorithm over the set of observations made during attempted recognition is considerably more efficient than the previous attempts to search the entire tree of possible sets of observation-feature pairs. The JCBB algorithm relies on eliminating entire branches as soon as a pair is added which violates the global optimality of the pair set.

C. Random Sampling

Although the JCBB algorithm is a dramatic improvement the full tree search, it still requires a lot of computationally expensive geometric constraint functions. In the case of a move to an unexplored section of the map, the entire search tree still must be explored [6]. One simple heuristic to improve both the worst case and general case search time is to split the search into two parts – a guess and a proof, using a random subset of observations for each part.

When the robot is relocated, it makes n observations of its surroundings. Using the random sample improvement to the JCBB, we select p of these measurements to generate a hypothesis of the new location using only their unary and binary constraints. Without using the expensive joint compatibility test, we reduce the search tree to a significantly smaller hypothesis. Then, we run JCBB on the remaining observations to verify the accuracy of the hypothesis.

IV. Memory Limitations

This section details the biologically inspired memory functions, which allow the SLAM implementation to act more robustly in large environments. The SLAM code as originally implemented was only intended to handle a relatively small number of features. This limit is reflective of two problems in CML in actual robots: (1) limited physical memory, and (2) matching observations to features becomes exponentially harder and more computationally costly as more features are stored. In order to solve these problems, we implemented a memory management system to handle the resources more efficiently.

When a feature is added to our memory, it is assigned a freshness function with probability p. The freshness is equivalent to a time stamp of feature acquisition. Over time, the freshness will decay and eventually drop below a threshold, at which point it is available to be removed from memory. Similarly, if the feature is observed again, its freshness will return to the initial Peak State. Features will be removed only when an upper limit of features to be held is reached. Furthermore, a feature that is revisited many times will be updated such that it will reflect its robustness in the explored environment.

The result of this new dynamic memory is manifold. Since only a random fraction of features are given freshness functions, the map loses some of its detail, but will retain its general shape. Furthermore, the areas that the robot has most recently explored will be the ”freshest” and most densely mapped. Regions that have been mapped in the past, and may not be seen again for a long time, are still kept in memory, much more sparsely.

V. Experimentation

To test the relocation and dynamic memory management system we have used an artificial dataset of an environment similar to a the inside of a building and a vehicle that has an odometry sensor mounted on it. In the beginning of a simulation the vehicle is given a constant velocity and directions as a function of time. The vehicle performs CML while traveling in its environment. Figure 1 depicts concurrent mapping and localization in the simulated environment. The vehicle is able to reliably map the features in its environment and travel through it, compensating for noise contributed by measurements and vehicle controls.

[image: image1.wmf]
Figure 1: CML map obtained by the vehicle. The continuous and dashed lines depict the vehicle actual and planned trajectories, respectively. A star marks each feature location, and the associated bar is a unique characteristic of the feature (determined by angle and length). Finally, the error in estimation in vehicle trajectory is marked by the deviation of the continuous line from the dashed line, and the error in estimate the feature location is marked by the radius of the circle.

First we tested the relocation implementation. We ran CML continuously until the environment was mapped and then kidnapped the robot. The algorithm was able to map the environment based on very few sensor readings at each step (as few as 3 observations). The ability to map the environment is based mainly on the relationship between the measurements, vehicle position and noise in the system. However, for the recognition to work, the features should demonstrate both intrinsic uniqueness (e.g., whether a feature is a corner or not) and correlations between features that is independent of the vehicle position. That is, the vehicle should be able to uniquely determine its location from a set of features available in its immediate location. Table 1 demonstrates the dramatic effect of distinctiveness on recognition performance. Changing the length and angle of the bar to correspond to walls and corners simulated distinctiveness of features. For example, all the bars with length close to zero while the other features correspond to walls. Distinctiveness was manipulated by add noise to these characteristics (not shown here). Importantly, the features distinctiveness plays a major role in the successful estimation of the new location.

	
	Relocation Estimation Error

	Features
	X
	y

	Normal
	-1.30 ± 20.73
	-0.58 ± 26.74

	Distinct
	-0.12 ± .41
	0.09 ± 0.39

Table 1: Relocation estimation error (±SD) as a function of feature distinctiveness. Note that the distinctive features show a much lower error and variance.

[image: image2.wmf]
Figure 2: Mean execution time vs. memory size.

Secondly, we tested the CML with memory limitations. In order to test the effects of using dynamic memory management on the performance of the mapping we measured the error in mapping as a function of number of features and the time needed to perform the exploration. Figures 2 & 3 demonstrate that although the algorithm is successful in mapping the environment with a limit on the number of features and it does so faster then it would do without the memory limitation, it does have larger variance and errors in the resulting map when the memory is limited. Nevertheless, the features’ variance does converge in this case and therefore the features do not contribute noise into the mapping and the CML is successful.

Finally, we tested whether the relocation is still effective when using dynamic memory management. Figure 4 shows that indeed the relocation is successful even when memory limitations are applied.

[image: image3.wmf]Figure 3: Feature estimation as a function of memory limit. Three maps with different maximum number of features are shown from lowest to highest (top to bottom). Note that the radius of the circles, and thus the error in estimating their location is inversely related to the memory size.

VI. Conclusions

In this paper we have proposed two different biologically inspired improvements to current SLAM implementations which make it more robust and dynamic. The random sample JCBB algorithm allows a robot to handle the relocation problem, in real-time, without searching the entire observation-feature tree. The memory management system allows it to get more out of a limited resource by slowly forgetting some of the details of old map information.
We have shown, experimentally, that a CML implementation can be enhanced to include characteristics of a autonomous episodic memory system. The vehicle was able handle a limit in the size of the map, and hence release both memory and computational resources. Furthermore, the robot was able to effectively identify its location in a new location in the environment (after being kidnapped) given that the vehicle had enough measurement of the environment, that these measurements were robust and that the features in the environment were distinctive.

To conclude, in this paper we have demonstrated that applying models based on human and animal cognition to an autonomous vehicle may enhance the vehicle ability to explore the environment and deal with its dynamic and rich nature.

[image: image4.wmf]Figure 4: CML with dynamic memory management and relocation. Two configurations are shown: no memory limit (filled circle) and memory limited to 80 features (dotted circle). The dashed circles show the variance (SD) in the error estimation.
References

[1]
José Neira, Juan D. Tardos, “Data Association in Stochastic Mapping Using the Joint Compatibility Test,” in IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 890-897, December 2001

[2]
A.P. Yonelinas, The Nature of Recollection and Familiarity: A Review of 30 Years of Research. Journal of Memory and Language, chapter 46, pp. 441-517 2002

[3] R.M. Shiffrin and M. Steyvers. The effectiveness of retrieval from memory. In Rational Models of Cognition, Eds M. Oaksford and N Chater. Oxford University Press 1998; M Chappell. Predictions of a Bayesian recognition memory model (and a class of models including it). In Rational Models of Cognition, Eds M. Oaksford and N Chater. Oxford University Press 1998.
[4]
John Leonard, Paul Newman, MATLAB implementation of SLAM code, December, 2002
[5]
Sebastian Thrun, “Robotic Mapping: A Survey,” in Exploring Artificial Intelligence in the New Millennium, February, 2002

[6]
José Neira, Juan D. Tardos, José A. Castellanos, “Liner Time Vehicle Relocation in SLAM - Technical Report RR-2002-08,” September, 2002

_975118117.xls
Chart1

		20

		40

		60

		80

		100

		120

		140

Time

of Features (Memory limit)

Execution Time

260

183

194

220

381

526

844

Sheet1

				Food		Gas		Motel

		Jan		12		17		10

		Feb		17		11		21

		Mar		22		29		14

		Apr		14		10		17

		May		12		17		10

		Jun		19		15		20

