A Plan-based Self-adaptive Intelligent Environment

Stefanie Chiou, Rob Kochman, Gary Look, and Kevin Quigley

MIT Artificial Intelligence Lab

December 11, 2002

Abstract. The Intelligent Room is a meeting room equipped with many types of sensors and actuators. The Room is an experiment in ubiquitous computing that investigates what sorts of human-computer interaction arise when computers are seamlessly merged with the physical environment. For the Room to have useful interactions with people, we present a system that gives the Room the ability to represent user tasks as plans, assign resources to these plans, and recover from errors that occur during execution of these plans.

1. Introduction

The Intelligent Room is a meeting room equipped with many types of sensors and actuators. The Room is an experiment in ubiquitous computing that investigates what sorts of human-computer interaction arise when computers are seamlessly merged with the physical environment. A number of research challenges arise in the study of this interaction, but they fall into two general categories. The first area is the challenge of getting the Room to display some measure of intelligence in its interaction with people. The second area is the challenge of coordinating the infrastructure that is necessary for the Room to carry out its intelligent interaction. We address both of these areas by building a system with the following three goals in mind: 1) provide the Room with the ability to represent user tasks as plans, 2) assign resources to these plans, and 3) recover from errors that occur during execution of these plans.

For the Room to be intelligent in the way it interacts with people, at some level, it needs to have some representation of what task a person is trying to perform and the plan he intends to carry out to accomplish that task. In our system, we provide such a representation for the Room. With this plan knowledge, the Room can then provide appropriate assistance to a person based on his intended plan of action and how much of that plan he has carried out. By being “plan aware”, the Room can proactively assist a user. For example, by knowing what the user plans to do, the Room could reserve necessary resources and configure devices the user may soon need. If certain resources are not available, the Room can suggest an alternate course of action. The Room could also guide users through the steps of a task with which they are unfamiliar.

Creating natural human-computer interaction in an intelligent environment such as the Room requires a rich multi-modal interface. Ideally, the Room should allow the user to interact via speech, gesture, and movement. Similarly, the environment should speak and give visual responses, at the very least. Achieving such interaction abilities is complicated, involving many distinct hardware and software components. For example, in order to hear and respond to a user’s question, the Room must have a microphone, audio input controller, natural language interpreter, textual question answering system, speech synthesizer, audio output controller, and speakers. Increasing the interaction complexity increases the number of components required and possible interactions among them.

Clearly, without an effective means of managing these components, their use quickly becomes infeasible. Additionally, as the variety of available devices and services rapidly increases, it becomes difficult to design software systems that use them effectively. Our system provides a resource manager to enable software components running on a user’s behalf to function without knowledge of the particular resources in an environment.

Finally, even the best-laid “resourced plan” can go awry, due to the fickle nature of real-world devices. The Room needs a way of diagnosing problems when they arise and be able to determine a way to recover from these problems and continue making progress towards achieving the user’s goal. Our system implements a diagnosis and recovery mechanism that allows plans to be patched when a resource required by a plan step fails.

The main contribution of our work is a proof of concept. In this paper, we will describe an actual system that incorporates aspects of resource management, plan monitoring, and plan recovery in a mixed-initiative environment. Section 2 discusses related work, Section 3 describes our system architecture, Section 4 presents a typical user scenario, Section 5 discusses our implementation, Section 6 is the discussion, Section 7 describes future work, and we close with a conclusion in Section 8.

2. Related Work

There has been much work in the areas of model-based reactive-planning, resource management, and software architectures for developing applications with improved usability. In this section we briefly describe some of this work and discuss what makes our project unique.

Model-based programming [2] is a programming paradigm that produces a plan that describes a series of transitions from one world state to another that some executor needs to carry out. The executor takes the plan and maps the state transitions into specific actuator commands, which are then carried out. If a fault arises during plan execution, the executor can re-plan the particular actuator commands needed to achieve the given state transition. This provides a level of abstraction for the programmer by freeing him from the need to think in terms of low-level system commands. The plans we present to the Room are at the level of method calls that belong to software agents. Our plans are at an intermediate level between the plans describing world state transitions and actual actuator commands because in the Room, software agents are referred to by their Java interface, so the actual method implementation is abstracted away from the plan the Room has to carry out.

With computing devices becoming more plentiful, the issue of resource management is becoming more and more important. The APEX system [1] is one example of a resource management system designed for air traffic control (here, the resource is the air traffic controller’s attention). The APEX system takes into account task priority and the cost of not allocating resources to various tasks. The resource manager in our system also takes into account these issues but differs in that it has a larger time horizon over which to consider resource allocation. The APEX system deals with resource requests as they come up. Our system has to take into account all the possible steps in the plan before allocating resources.

Lastly, Collagen [3] applies collaborative discourse theory to improve human-computer interaction. Applications written with Collagen use a software agent to collaborate with a user as he works on his task. The agent maintains a model of what the user is trying to do by having a dialog with the user (this dialog includes recording user activities and asking for clarification when necessary). As the user completes parts of his task (and the dialog between user and agent continues) the agent works with the user to perform certain actions when this interaction would be useful. The resulting interaction is similar to two people working together in front of a whiteboard to solve a problem. Our work is similar to Collagen in that we also have a representation of a user’s task, but we apply this representation to entire spaces whereas Collagen has focused on desktop applications.

In addition to these differences between our work and previous work, the most distinguishing aspect of our work is that we’ve addressed a number of diverse research issues—resource management, plan monitoring and recovery, and mixed-initiative computing—by implementing solutions to these issues in a real world system, namely the Intelligent Room.

3. System Architecture

Our system consists of five parts: an executor agent, a planner, a resource manager, a recovery and diagnosis component, and Planlet, a generic software layer used to represent plans. We briefly describe each of these parts below.

Planner: given a goal, the planner produces a partial-order plan that will achieve the goal. Steps in the produced plan could require certain resources in order to be carried out. The main thrust of our research was not in planning per se, so our planner implementation consisted of a library of different plans.

Resource manager: allocates resources to competing plans. The resource manager allocates resources in such a manner as to maximize the overall utility of all plans under the given resource constraints. Together, the planner and resource manager form one unit that is used by the executor agent.

Executor agent: the executor agent passes the user’s goal to the planner/resource manager and receives back a partially ordered resourced plan (i.e. a plan where the resource requirements for each step are bound to specific resources). The executor then executes this plan. If, in the course of plan execution, the executor agent encounters an error in plan execution (such as might arise if a specified resource is defective), it asks the recovery and diagnosis agent to repair the plan.

Recovery and diagnosis: in the event that the original plan given to the executor is defective, this component attempts to patch the plan so that forward progress can be made. This module attempts to isolate the smallest part of the plan that would need to be patched and then passes this information to the planner to actually generate the patch.

Planlet: the actual plan used in our system is represented as Planlet objects. Planlet maintains a model of what steps the plan is comprised of, what steps have already been performed, and what steps can be executed next because all their preconditions have been filled. The executor agent asks Planlet what steps it can do next, and after these steps are performed, it informs Planlet of their completion. Planlet then updates its internal model of the plan state for the next time the executor agent asks what steps can be done next.

The interaction between the different parts of our system is represented in the following figures. Figure 1 illustrates how the executor gets a plan to carry out. First, the executor passes the goal it wants to achieve to the planner. The planner generates a plan that achieves this goal and then passes this plan to the resource manager. After assigning resources to this plan, the resource manager then returns the resourced plan to the planner, who then passes it to the executor. The executor then carries out the steps in the plan by calling software agents to perform the specified plan steps.

Figure 2 illustrates what happens if the executor receives an error from a software agent. In this case, the executor then passes the current plan state to the diagnosis and recovery unit. After performing a diagnosis to determine the cause of the error, the recovery unit determines what the best recovery strategy would be to continue with the plan (i.e. a set of constraints that a plan patch would need to satisfy in order to fix the broken plan).

[image: image1.wmf]Executor

Diagnosis &

Recovery

Resource

Manager

Planner

Plant

Actuator

commands

Actuator

response

Goal

Plan

Resourced Plan

Resourced Plan

Executor

Diagnosis &

Recovery

Resource

Manager

Planner

Plant

Actuator

commands

Actuator

commands

Actuator

response

Actuator

response

Goal

Goal

Plan

Plan

Resourced Plan

Resourced Plan

Resourced Plan

Resourced Plan

Figure 1. The process of how the Executor gets a resourced plan to execute is illustrated above. Essentially, the Executor consults the Planner for the plan, the Planner consults the Resource Manager for the plan’s resources, and once the plan has been assigned resources, it is returned to the Executor for execution.

[image: image2.wmf]Executor

Diagnosis &

Recovery

Resource

Manager

Planner

Plant

Actuator

commands

Error

New plan

Faulty

plan

New resourced plan

New resourced plan

New resourced plan

Diagnosis

Executor

Diagnosis &

Recovery

Resource

Manager

Planner

Plant

Actuator

commands

Actuator

commands

Error

Error

New plan

New plan

Faulty

plan

Faulty

plan

New resourced plan

New resourced plan

New resourced plan

New resourced plan

New resourced plan

New resourced plan

Diagnosis

Diagnosis

Figure 2. The process of what the Executor does when it encounters an error in plan execution is illustrated above. After detecting the error, the Executor passes control to the Diagnosis and Recovery Unit who makes an assessment on what sort of constraints a fix to the plan should satisfy. This information is then passed to the Planner who creates a new plan based on the current one. The new plan gets assigned resources and is then returned to the Executor, which continues execution.

4. Example Scenario
A typical user scenario for the Room is the following. Assume you had a multi-media presentation that required two separate projector screens. An example goal would be the following: “configure the Room so that it can show my presentation.” The result would be that the lights in the Room would dim, your presentation would appear on the two separate projectors that it requires, and you will be able to control your presentation by giving the Room voice commands. Note that this is a mixed-initiative scenario; that is, the Room must be able to identify which steps it should be able to do without waiting for explicit user direction (e.g. dimming the lights) and which steps require explicit user direction (e.g. advancing to the next slide in the presentation). The appendix to this paper illustrates this scenario.

5. Implementation

This section describes the implementation of Planlet, which is the software layer used by the Room to represent plans and progress through plans, our resource manager, and our plan recovery and diagnosis unit. After describing each of these pieces, we discuss the design decisions made when designing that particular piece.

5.1 Planlet

Planlet is a generic software layer designed with the intent to make it easier for applications to clarify user confusion and proactively meet user needs by providing a way to represent user plans and manage progress in these plans. Planlet is implemented in Java.

Planlet represents a plan with a directed acyclic graph, where the nodes are either subplans or atomic steps and the arcs represent the flow of materials between nodes. Iteration is supported by recursion. Each domain defines its own vocabulary of atomic steps, and Planlet exposes an API to define such steps. Both plans and steps define a set of inputs and a set of outputs; directed flows between outputs and inputs define the plan’s graph. Conditional flow is obtained by associating conditions to the arcs in the plan graph; material only flows along the arc if the condition holds.

As a user makes progress through a plan, the nodes in the plan graph are marked as done. When a node is marked as done, all its output materials become available to the consumer nodes downstream. When a step has all its input materials available, it is included in the list of steps Planlet expects the user to perform next. Planlet supplies the Ubicomp application, in the case of this paper, the Executor, with that list so that it can be proactive in assisting the user with carrying out his plan.

The assumption underlying Planlet is that the role of Ubicomp applications is to assist rather than control the user in carrying out a plan. A plan and the progress through it represent knowledge about events in the real world. These events are beyond the control of and, in many cases, beyond accurate monitoring by computer systems. When automatic context sensing is limited, how much Planlet knows about the progress through the plan is very much dependent on the good will of the user in letting Planlet know. Therefore, Planlet takes a liberal, accommodating attitude towards tracking the plan.

Nevertheless, Ubicomp applications can take a range of measures upon noticing that the user is deviating from the plan. Those measures may range from making sure the user is aware he is deviating (and allow or even register the new user actions as an alternative branch in a known plan), to refusing notice of completion of other than the permitted steps (akin to workflow systems), to actuation in the physical environment or communication with authorities whenever safety may be compromised (e.g. when monitoring Alzheimer’s patients). Planlet supports this range of actions by offering the application two types of mechanisms.

First, Planlet offers two modes of marking a step as done: soft complete and hard complete. When soft complete is called on a step or subplan, Planlet checks if that step is on the list of steps that the user is expected to take next. If not, it returns a diagnostic and does not change the state of the plan. Such diagnostic is examined by the application and an appropriate measure can be taken. If the application is able to determine that enforcing the completion notice is allowable from the user’s point of view, it can call hard complete on that same step or subplan. For a hard complete, Planlet assumes that the user did not bother to fill in all the details of what he is doing—and that the application allows that—so it just marks the step as being done (albeit done unexpectedly because it is a step that is downstream from an expected step) and advances the plan execution state to the indicated point. In our system, we take the more conservative approach to plan monitoring and only use Planlet’s soft complete feature.

Second, Planlet allows parametric plan definitions to be instantiated incrementally at runtime, as the required information becomes available. Planlet also allows the plan to be changed at runtime, by inserting or eliminating steps before they are marked as complete. To which extent this mechanism is used is a decision of the application and is derived from the extent of the domain’s constraint. One can imagine giving the user a lot more leeway when cooking dinner than when repairing a high-voltage mechanism.

5.2 Resource Manager

The planner is a simple system that given initial and final world states, produces a series of steps that when executed, changes the world from the initial to final state. These plans are stored as Planlet plans in a plan library that allows easy retrieval. Each plan has a list of resource types needed for its execution. When a plan is requested, the planner submits a request to the resource manager for these resource types. Assuming the resource request is satisfied, the planner binds the individual resources received from the resource manager to the types needed by the plan. When the plan completes, the planner tells the resource manager that the plan has completed, so that the resources can be made available to other plans.

In order to allocate resources for a particular plan, the resource manager uses the resource types associated with a given plan. For each requested type, the resource manager searches its database for available resources of that type and assigns to the plan the resource of that type with the lowest cost. Resources are assigned to a plan for the entire time the plan is active, even if only a small part of the plan uses that resource. If the manager is unable to allocate all resources for a plan, the resource request remains active until the necessary resources become available or the request is cancelled. If a particular resource becomes unavailable for any reason, the manager notes whether the resource is allocated to any plan. If the failed resource is allocated, the manger attempts to allocate another resource of that type. Finally, when a plan has completed, the manager returns the resources assigned to that plan to the list of available resources.

In our working example, a projector fails, and a patch plan is required to fix it. This patch plan needs a resource, namely a new projector, so the resource manager assigns an available projector. Also, the failed projector is marked as unusable in the resource database. Because the patch plan becomes part of the main plan, the new projector resource is assigned to the main plan. Once the main plan completes, the new projector is relinquished along with the other resources.

The core of the resource manager is the Java Expert System Shell (Jess) rule engine. Information concerning individual resources, types, costs, assignments, and resource requests are all stored as facts in the Jess database. For example, each resource has a corresponding fact that indicates its name, type, and cost. Another fact type maps individual resources to the plans to which they are assigned. Naturally, the logic concerning resource assignments is written as Jess rules. When a resource request fact is added, a chain of rule firings occurs, and new facts indicate the success or failure of the request. Due to the simple interconnections between Java and Jess, the remainder of the system can easily use these results.

5.3 Recovery System

The Intelligent Room like all other embedded systems will occasionally fail when attempting to carry out a task or follow a plan. In order to create a system that is robust, the system must have mechanisms that allow it to recover from these faults. Otherwise, embedded systems like the Room will need to be serviced by a human each time it fails. The type of care that is required by such a system would be extensive and time-consuming. Thus, a recovery system is an essential component of any robust plan-execution system.

When an error is caught by the plan executor, the recovery system is called. This system utilizes the diagnosis system to determine where the error occurred, and then decides how to handle the problem. When the recovery system is notified of a failure, the only information it has is the current plan being executed and the step in which failure was detected. That information is sent to the diagnosis system, which determines which step is responsible for originating the error. When the diagnosis system is returned a faulty step by the diagnosis system, it categorizes the error as either one that was caused by a bad input or one that was caused by a resource failure in the current step. This distinction is important because they are handled differently by the recovery system.

If a failure was caused by a bad input, the recovery strategy is to find a patch of new steps that could provide the expected input. The recovery system can obtain such a patch by utilizing the planner that created the plan in the first place to find a patch that achieves the needed input or preconditions. An example is shown below:

[image: image3.jpg]Show Next Slide 1| [Turn Projector On

Patch

Connect Machine 2

Turn Projector On

Show Next Slide 2

Figure 3: The solid link from “Turn Project On” to “Show Next Slide 2” is broken, and the dotted link from the “Patch” to “Show Next Slide 2” represents the recovery.

In this example, the step “Show Next Slide 2” requires that the input from “Turn Projector On” be good, however since that input is not good, a failure is detected. After the diagnosis system determines that it was the “Turn Projector On” step that produced the faulty output, the flow between the “Turn Projector On” step and the “Show Next Slide 2” step is deleted, and the planner is queried for a patch that can establish the same precondition that “Turn Projector On” was originally supposed to fulfilling. If a patch is found, then it will be inserted into the plan, and that plan can be returned to plan executor to continue toward the goal.

If the failure is caused by a failure in the current step, meaning the error was caught before it was able to propagate, then the recovery system simply makes a request to the planner for a new resource for that step. Since our system deals exclusively with resource failures, assigning a new resource should be sufficient to recover from all errors caught at their point of entry into the system. An example can be seen below:

[image: image4.jpg]Connect Machine 2

Figure 4: The box with the dotted sides represents the step that failed. Since the failure resulted from a failed resource in the current step, the recovery is a new resource assignment to that step.

In this example a failure in the “Turn Projector On 2” is determined to have valid, correct inputs from “Connect Machine 2,” so the failure must lie in the step “Turn Projector On 2” itself. Thus, the problem must be a faulty projector 2. Requesting a new resource for “Turn Projector On 2” from the planner will allow the plan to proceed unimpeded.

The recovery system also utilizes a two-stage lookup for resources. Each step possesses a resource table. The keys of the resource table are the resource at each step and the values are a variable name. This variable name is bound to a hardware device in the resource table held at the plan’s global level. This allows a recovery from a failure to propagate down to the remainder of the plan. In the examples cited above, both the patch and the new resource assignment will alter the global variable table which will allow the fix to propagate to all later steps that require the resource that was determined to be faulty.
5.4 Diagnosis System

The recovery system needs a diagnosis system to provide addition information about the failure that occurred. Initially, the recovery system is provided with a plan, the failure in the form of an exception, and the current step. From this information, recovery needs to generate an alternate plan that is able to correct the failure. The diagnosis system isolates and determines the exact point of failure for the recovery system. This is an important step in any recovery system, because without it the recovery system would be unable to develop a good recovery plan.

The diagnosis system receives requests from the recovery system to isolate the failure in the plan to the step that caused it. This system is given the current plan and the current step, and it is asked to return the input to the current step, which is either invalid or incorrect. The current implementation of the diagnosis system is to backtrack through all of the steps that are upstream from the failure point while asking an oracle whether each step is “good” or functioning correctly. Eventually, the diagnosis system will have backtracked to the step that is malfunctioning or to the starting node. If the system reaches the starting node, then all of the inputs to the current step are correct. Otherwise, the output from the malfunctioning step can be traced back down to the failed step to determine which input to the failed step was incorrect. This failed input is returned to the recovery system. In the event that all inputs are correct, null is returned to the recovery system, and the recovery system will then categorize the failure to be one that occurred at the current step.

6. Discussion

6.1 Planlet

Most plan models adopt a control flow perspective that is explicit about ordering constraints (for instance: do A then B then C) but implicit about the reasons for those constraints. Like Data-Flow Graphs (DFGs), Planlet adopts a pure material flow model to derive the constraints on plan execution: two steps A and B are constrained to occur one after the other only if B consumes something that originates from what was produced by A. Consequently, Planlet’s model is explicit about the sets of input and output materials corresponding to deliverables of the project’s activities.

There are two benefits in forcing the plan to be explicit about the reasons for sequence constraints, which derived from material producer-consumer relationships. First, it maximizes the potential for identifying the next possible steps since there are no artificial sequence constraints based on how the planner thinks the user will carry out the plan. By doing this, we make it easier to take advantage of probabilistic models built on top of the material-based constraints. In the future, these models will be able to reflect user habits or best-known practices. By being able to discern the most likely steps among the possible next steps, Ubicomp applications can offer valuable assistance to the user.

Second, whenever a task produces or consumes physical materials, the physical context (i.e. location) poses severe constraints to the feasibility of carrying out a step. For example, if a required material is across town, the user is not likely to carry out the step despite being possible according to the plan. Exposing materials and their constraints as part of the plan is critical to recognizing such situations.

6.2 Resource Manager

The current resource manager implementation is limited to finding resources for one plan at a time; that is, it must allocate all resources for one plan before it can begin allocating resources for the next plan. This is necessary to prevent deadlock, which could occur if both plans with similar resource needs are partially allocated resources that the other needs. This problem should be fixed in a future version.

As stated earlier, the resource manager assigns a plan’s resources for the entire duration of the plan. If a particular resource is only used briefly in the plan, it will remain idle yet unavailable to other plans until the complete plan to which it assigned completes. When there is excessive demand for a resource, this is truly a significant problem. One possible solution is to only assign resources for the particular steps of the plan for which they are needed. The problem with this solution is that when a necessary resource is unavailable, the plan cannot proceed. The plan will wait until a resource becomes available, all the while tying up the other resources allocated to it. This design is definitely not the most efficient with respect to resource utilization, though it does give the assurance that once a plan starts, it has all the resources necessary for its completion.

Although this system selects the resources with the least cost, it makes no other distinction between resources of a given type. Of course, different resources of the same type may have many different qualities, which means that certain resources may be more desirable than others for a given plan. For example, a room may have several projectors of type “projector,” but they may have different resolutions, display sizes, and available inputs. Future versions of the resource manager should take into account a plan’s preferences and individual resource characteristics. This will be discussed further in Section 6.

6.3 Recovery System

The current recovery mechanism appears to function fairly well within the confines of the system described in this paper; however, it makes certain assumptions about the types of errors that can occur. First, it assumes only resources can fail. This system does not consider the fact that the detector of the error could also be faulty. In a physical system, the mechanisms that detect errors are also not totally reliable. This fact leads to a second problem, which is determining the location of the failure. Since the system cannot totally trust the detection system, it cannot trace a failure back to a specific step with absolute certainty.

Furthermore, even if the system could determine the specific point of failure, it is not clear what the recovery algorithm should be. For example, if a calculator resource fails to perform and addition step correctly, and that number is then used in a later step to produce an output, then the correct recovery would be to counteract or undo the incorrect addition and to recover from there. However, if a projector resource fails at showing a slide in the middle of a presentation, then the correct recovery would be to simply find a way to display the slides of the rest of the presentation on a different projector. This recovery scheme does not need to undo or redo any of the steps that showed earlier slides. The two algorithms described in these examples are very different, and ideally a recovery system would be able to make a distinction between problems that fall into one of these two categories. The implementation of the system described in this paper is limited to dealing with failures that fall into the second category, which is that resource failures that do not have cumulative effects. This limitation was imposed because of time and complexity constraints.

6.4 Diagnosis System Discussion

The diagnosis system, like the recovery system outlined above, utilizes assumptions to simplify the diagnosis problem being presented. The first assumption is that there is a mechanism that can determine whether a step is correct with absolute certainty. As stated in Section 6.3, this is not the case since these mechanisms for checking the correctness of a step can also fail. Although, we can make this assumption because the oracle used in this system has complete knowledge of a step’s correctness. An oracle was necessary in this systems because the intelligent space that was used to implement this system did not have the necessary sensors and mechanisms for monitoring the state of resources. However, a more realistic model needs to be implemented for the diagnosis system to handle real errors in resources.

The second major assumption by the diagnosis system was that all failures are single resource failures. The diagnosis system assumes that failures never occur from multiple resources failing or interacting in a way that elicits unforeseen side effects. In the physical world, this is not an accurate assumption since all of the resources interact with each other in an intelligent space. Since the system does not consider these types of failures, there are many failures that would be diagnosed incorrectly with the current implementation of the diagnosis system. This limitation constrains the ability of the recovery system to correctly recover because the diagnosis component is unlikely to return accurate information concerning the failure.

7. Future Work

In this section we describe future work for the various parts of our system.

7.1 Planlet

Currently, Planlet views all next possible actions as equally likely events. However, just because an event can possibly happen next, this does not mean it is a plausible next step. What a user does next in his plan is also influenced by his current task context. Where the user is currently located, the current time of day, and his preference to doing certain plan steps over others all influence what a user is expected to do next. A future version of Planlet will take context into account to generate a probabilistic model of what steps the user could be expected to do next, in addition to providing information as to what the user is able to do next.

7.2 Resource Manager

The resource manager can be greatly improved by considering preferences. The natural way to represent preferences is “x prefers y to z.” For example, one might say “I prefer fast speed to high quality,” which implies that speed is more important to me than quality. Taking this a step further, it is possible to crudely quantify this preference. For example, “I like fast speed 4 times as much as high quality” adds this additional information. This fact can be represented as:

((speed fast) (>> 4) (quality high))

Using several of these rules, we can generate more rules. For example, if we have the following two facts:

((speed fast) (>> 4) (quality high))

((quality high) (>> 3) (privacy true))

We can generate a third fact:

((speed fast) (>> 12) (privacy true))

Simple utility functions can be determined by assigning a basis utility to one of the conditions. For example, if we give (speed fast) a utility of 1, then we have:

U(speed fast) = 1

U(quality high) = 4

U(privacy true) = 12

The addition of a utility function allows all acceptable resource allocations to be ordered by desirability.

In the current version of the resource manager, a given resource is marked as either operative or inoperative. This is very useful information, but unfortunately, it is often impossible to know with complete certainty whether a resource is operative. It is more likely that the system will suspect that a particular resource has failed with a probability of less than 1. With this information, the resource manager can potentially do several things. First, it can quickly assign the resource in question to another plan, with the hope the new plan will either confirm or deny the state of the resource. For example, if one plan believes that a resource has failed with an 80% probability, that resource is quickly assigned to another plan. If the second plan also believes it has failed with an 80% probability, then the resource manager should know that the resource has failed with an extremely high probability. Another option for the manager is to avoid assigning the resource to another plan, which would increase the probability that plans will execute without a problem. Lastly, the probability that the resource is operational gives information concerning the resource’s reliability. This reliability level is an attribute that can be used by plans in assigning preferences.

Another potential improvement involves more efficient resource scheduling. As discussed in Section 5.4, assigning resources for the duration of a plan does not result in their most efficient use. A major cause of this problem is that the current implementation of the resource manager does not concern itself with future scheduling—either the resource is assigned now, or it is not. Adding a temporal element would undoubtedly alleviate much of this inefficiency. For instance, consider a presentation plan that lasts one hour and needs a projector. Under the current system, the plan would have a projector assigned to it for the entire hour. However, if the plan specified that the projector was only needed between the 30th and 40th minutes of the plan, the projector could be used by other plans during the remainder of the time. Furthermore, the resource manager knows that the projector is needed for that 10-minute period in the future, so it won’t allocate it to other plans. Of course, it is often impossible to predict exactly when a resource is needed. In our example, if the need for the projector is delayed for a few minutes, it may have been assigned to another plan—a problem that must certainly be fixed.

7.3 Recovery and Diagnosis System

The recovery and diagnosis systems in this implementation made many assumptions that simplified the overall picture, and also limited the complexity of the system. Due to time constraints, these assumptions were necessary to complete the system. Furthermore, this system was built to be a prototype in the Intelligent Room where its usefulness could be evaluated more fully. As a prototype, it is expected to have a limited scope of problem solving ability. However, it is also understood that as a work in progress further work will be done to extend the system and enhance its abilities.

A large area of future work will be devoted to creating a more realistically modeled diagnosis system. The current implementation relies on the use of an oracle to determine the state of a resource. An oracle is an unrealistic model for a resource error detection system in the physical world, since no hardware is ever infallible. Thus, to model a system that is true to life a different approach must be found. One possibility is to actually implement various sensors and checking mechanisms in the room to detect failures in resources. This method will be limited by the availability of sensors and the cost of checking some conditions. Furthermore, there may be some states, which are impossible to check.

A second more feasible possibility is to generate a list of possible faults, which could result in the failure detected. The aggregate probability of each resource in the list being in a “bad” or failed state can then be calculated. The resource with the highest probability can then be chosen as the failed resource, and a recovery for that failure can be done. At the same time, these new calculated probabilities for the “goodness” of a device could be used to update some world state. This type of method eliminates the need for sensors and other checks. Instead, this system relies entirely on mathematically probabilities. An added advantage of this system is that it allows the system to primitively learn which resources tend to be good and which ones tend to be bad, through constantly updating the world state based on failures that occur.

Although the second option described here is an improvement over the idea of deploying a network of sensors to detect resource states, it is still unable to directly isolate multiple resource failures. The aggregate probability method may result in recoveries that happened avoid multiple resources that fail, because after updating the world state these resources are no longer the best resources for the recovered plan. However, an even more explicit method for obtaining the possible resource failures, regardless of its multiplicity, would be to implement conflict-directed A*. This algorithm uses a cost function to rank all of the possible resource assignments in the system that can result in the error of failure observed. From this list, the assignments are tested in order of least cost to greatest cost for constraint conflicts. If the first assignment is not consistent, then the conflict is noted and all resource assignments with that conflict are eliminated from the list of candidates being considered for the diagnosis. This elimination helps shrink the search space at a higher rate, than could be achieved with individual checks for all candidates. The first assignment that is consistent with the constraints is identified as the diagnosis. Using this method, it is possible to find multiple failures since the assignments can have multiple resources in “bad” states.[4]

The second major are of work to be done involves expanding the recovery system, so that it can recovery from other different types of errors such as the calculator error described in Section 6.3. This area involves developing different algorithms for different failures and having the ability to categorize failures reliably.

The recovery system should also take into account various costs and constraints, which it currently does not. One such constraint would be amount of time allotted for a task and any recovery that is needed. This constraint may mean that the optimal patch of a failed plan cannot be found and a less optimal plan must be chosen, or it may mean that a failed plan cannot be patched at all because there simply isn’t time. Another possible area to explore would be how to choose a between a patch that has a very high cost of failure and good reliability and a patch that has a lower cost of failure and less reliability. This constraint could mean that a patch with lower reliability is chosen over a plan with higher reliability because the cost of failure for the higher reliability plan is simply too high. Issues of balance like these are numerous in the world of recovery and would be included in future efforts to improve the system.

8. Conclusion

We have built a real-world system that provides some measure of intelligence to a ubiquitous computing space. This was done by incorporating aspects of resource management, plan monitoring, and diagnosis and repair to create a plan-based, self-adaptive intelligent environment.

9. References
1. Michael Freed. "Managing Multiple Tasks in Complex, Dynamic Environments", Proceedings of the American Association for Artificial Intelligence, 1998.
2. Phil Kim, Brian C. Williams, and Mark Abramson. "Executing Reactive, Model-Bas Based Programs through Graph-Based Temporal Planning", Proceedings of the International Joint Conference on Artificial Intelligence 2001.
3. Charles Rich, Candace Sidner, and Neal Lesh. "COLLAGEN: Applying Collaborative Discourse Theory to Human-Computer Interaction", Artificial Intelligence Magazine, 22(4) pp 15-25, Winter 2001.
4. Brian Williams and Robert Ragno. “Conflict-directed A* and its Role in Model-based

 Embedded Systems”, Special Issue on Theory and Applications of Satisfiability Testing,

 Journal of Discrete Applied Math.
Appendix 1

[image: image5.jpg](dvdoffy (projector B off) (lights off) (ppr. stopped)
: P 7 '

(projector B off)

4 ¥

! Lights On| [Setup Presentation File | [Connect Machine 1 :
/ |
& i (lights on)+ (file ready. (con macA proj A+ 7
] +
Dim Lights Start PowerPoint Tutn Projector On
4 (lights dim; t reads
] : | A (prejom
1 [Connect Machine 2
: Start Pregentation |--e—————|
| (con macB projB) b
N (slide 0) + (ppt started) ™
Tun Projector On 2 Show Next Slide 1 |———
/slide B
Show Next Slide 2 |~——————
M
Show Movie Show Next Slide 3 |-ee——|
Aﬂe 3
Sync
Tura DVD Off \Q:% »
@aom] . Show Next Slide 4 ||
% ¢ (slide 4)
i Stop Presentation e T
| I\ (ppt stopped)
K ' [Brighten Lights
/ | L (lights on) ! [Turm Projector Off 1
/ ; 4 T
i ;]
',j , Lights Off " v
(proj B off) (dvd off) (lights off) (ppt stopped) (proj A off)

PAGE
16

_1101052993.vsd

_1101052936.vsd

