
1

Implementing Some Foundations for a Computer-Grounded AI

Thomas Lin

MIT
410 Memorial Drive

Cambridge, MA 02139
tlin@mit.edu

Abstract
This project implemented some basic ideas about having
AI programs that are embedded in a computer file system
environment. The programs learn, communicate, and take
actions on the file system. They use the FF planning
system between actions in order to generate new plans to
decide which action to take next.

Introduction
This project implemented some foundations for a
computer-grounded AI. A graphical control panel was
created. Each program currently uses four methods: a
knowledge base, a chat component, an emotions
component, and a FF [Hoffman & Nebel, 2001] planning
system. The system can currently run several demos.

In terms of 6.834 project objectives, this project looks
at the FF planning method. In problem set two, students
manually generated FF data files from a domain, and then
use FF to generate a plan that solves the domain. In this
project, FF is expanded to continuously generate plans
(whose first actions get executed) in a dynamic
environment.

Robots and Simulations
Much AI development has gone into developing
autonomous robots in real life and robots in simulation.
Much AI development has also gone into developing non-
autonomous AI software that help users do things.

This project takes the stance that interesting AI can be
written that is both autonomous and embodied only as
software. In such a domain, I/O takes the form of
computer I/O such as the keyboard and the network.
Programs like this could read images and sound already
encoded from the internet. They would access huge
computer databases and libraries.

While programs developed in this environment would
have trouble controlling robots, I believe they still have
the potential to perform higher-order reasoning tasks. For
instance, I don't see limits barring them from being able

6.834 Final Project, Fall 2002

to conduct research alongside each other and alongside
people.

Developing programs in such an environment has the
advantage of creating robots in that the programs actually
are in, and interact with, the real world. It has the
advantage of creating robots in simulation in that
everything is already in digital form, so more time can be
spent working on reasoning techniques, as opposed to
working on hard problems like robot motor control and
filtering sensor input.

This project implemented some foundations for a such
a computer-grounded AI architecture.

Development of Control Panel
A Java Swing control panel was created. This control
panel lets the user start the program runs, watch the
programs communicate, communicate with the programs,
and see the internal states of the programs.

There is one code development directory (/Original-
Mind). The user uses the control panel to specify that they
want n copies of the program to be run simultaneously.
Multiple copies can be run so that each copy can have
other copies to interact with. The user presses "Go," and
the Control Panel copies the original directory n times,
into the /Mind1, /Mind2, ... /Mindn directories. The
Control Panel then executes each copy of the program as
a separate process.

Each program begins with the same state and
knowledge, but they diverge quickly. The user can choose
to say things to individual programs. The programs can
explore the environment in random patterns. Programs
begin execution at slightly differing times, so one might
gain control of a limited resource before another.

Having the control panel also lets the developer see the
internal states of the programs, and this makes it easier for
him to understand the techniques being used and makes
the programs easier to debug.

2

Each Program

Overview
The base Mind program currently uses four methods: a
knowledge base, a chat component, an emotions
component, and a FF planning system. These methods do
not necessarily work together right now, but they would in
the future. They were chosen because they all implement
behavior or state that would be expected in a person.

During runtime, each Mind program repeats a basic
loop. The main loop consists of: 1. Check for new
messages. If any, add them to the knowledge graph. 2.
Run FF and perform the first action in the resulting plan.
3. Update the emotions table. 4. Learn a random sentence.

The program is implemented as a mix of Java, Perl, C,
and some precompiled code. This allowed for quick
integration of any existing code. For instance, the main
program is written in Java but the basic FF code I had was
in C. So, I had Java do a command line call to run the FF
code and retrieve the results.

Knowledge
Whenever a sentence is addressed to a program, it takes in
the sentence, parses it, and adds it to a general knowledge
graph. Basic inference can then by run over this graph.

The program currently has two methods of part-of-
speech tagging the sentences before converting them into
the patterns and concepts needed for the graph. The
default is for the program to send the sentence to a copy
of the Connexor parser running on a Media Lab machine.
The backup is a locally implemented Brill Tagger [Brill,
1992] program that is part of each program's code
directory.

After part-of-speech tagging each incoming sentence,
the program separates the sentences into concepts and
patterns. All adjacent adjectives and nouns in the sentence
are turned into concepts. The pattern is the remaining part
of the sentence after the concepts are removed. So for
instance, "the fast cat ate the mouse" becomes concepts
"fast cat" and "mouse" connected by the pattern "the ? ate
the ?". A graph is then organized with each unique
concept being a node, and the patterns being the edges.

The control panel allows users to see all of the
concepts, patterns, and links between concepts and
patterns that each running copy of the program has picked
up.

Once a graph is in place, some basic inference can be
done [Lin, 2002]. The program can now relate any two
concepts by finding and returning the shortest path in the
graph between those two concepts. The program can
generate inference rules (e.g. "?x likes ?y" + "?y is often
in ?z" -> "?x is often in ?z") by finding cycles within the
graph and turning the concepts into variables.

To model how people do different independent research
in the real world, the programs have access to a database

of around 400,000 English sentences, and read random
sentences from it. These random sentences are then
tagged and added to the program's knowledge graph. This
leads to quick divergence in what the different programs
know.

Chat
Each program is able to chat with other programs and chat
with the user. Each program's chat component is currently
implemented as the Eliza program [Weizenbaum, 1966],
but in future development this will change so that the chat
becomes more correlated with the program's knowledge,
goals, and choice of actions.

The current demo to show that the chat infrastructure
works is to set up several programs and have them chat
with each other. Because the demo is set up with Eliza
right now, the conversation goes back and forth with no
real topic. However, the demo is also a demo for showing
knowledge graph construction. All knowledge passed to a
program is added to that program's graph, so incoming
chat is tagged, broken into patterns and concepts, then
added to the knowledge graph. Eliza and part of speech
tagging both run fast, so the user can see the graph being
built very quickly.

Actual chat is currently implemented as having the
programs write to and read from a log file. When the user
has something to say, the control panel takes the user's
message and appends it to the log file so that the
programs are able to read what the user said. The
programs currently open this log file in Java as a
RandomAccessFile and each seek to the position they last
read from. This way, if the log file gets large, the time it
takes to read from the file does not explode.

Future directions for this include allowing the programs
to communicate using email, over internet messaging
protocols, and by posting on internet message boards.

Emotions
Emotions is implemented using one of Kismet's
[Breazeal, 2001] emotion charts. Two internal numbers
are stored: one for happiness/unhappiness and one for
excitement/sleepiness. A space is formed with these two
numbers as the axes. Different emotions come from
having different values along these two axes. For
example, a high value for happiness and a low value for
excitement leads to the "content" emotion. A low value
for happiness and a high level for excitement leads to the
"afraid" emotion.

The control panel displays an emotion chart for each
program being run. It uses a blue dot to update the current
emotion values for each program.

The happiness/unhappiness and excitement/sleepiness
values will eventually come from the chat, the
goals/actions, and the knowledge. Positive or negative
comments from the chat would have a small, temporary
effect. Being able to achieve goals and successfully
complete actions would lead to a medium range effect on

3

emotions. Positive or negative outlook on the world from
the knowledge graph would lead to a long-term effect.
This setup has not yet been implemented yet though, and
the emotions at time t for any program are currently set to
the emotions at time t-1 plus a small random change.

Implementing FF

What is FF
In the Planning Problem, programs are given a set of
possible states of the world, and possible actions to take in
the world. Each action has a precondition and an effect.
The program is then given a start state and a goal state,
and asked to find the sequence of actions that can be
taken to go from the start state to the goal state.

The main planning techniques that we learned in class
were Partial Order Planning, Graph Plan, and FF. FF
stands for "Fast Forward." FF can generate plans with
both the STRIPS and ADL representations.

The FF planning system does fast plan generation
through heuristic search. It runs by combining a relaxed
Graph Plan with enforced hill-climbing. Because of its
ability to prune the search space, FF is the fastest of the
three methods. FF was the most successful automatic
planner at the AIPS-2000 planning competition.

Applying FF to this domain
FF is used in the program to handle goals and actions.
This is an extension of what was done on problem set two
with FF. In that problem, we generated FF data files by
hand and used it to generate one plan one time.

In its application here, the FF data files need to be
generated by the program.

Also, FF is run multiple times here. The programs
repeatedly sense the state of the world, generate the FF
plan that helps them achieve their goals, then take the first
action of that plan. Running FF multiple times lets the
program plan in a dynamic environment.

If it wants to do 3 things, then the FF plan might be: 1.
do thing 1, 2. do thing 2, 3. do thing 3. In a dynamic
environment however, thing 1 might become undone
while the program is doing thing 2. In this case, after
doing thing 2, we'd want the program to generate the new
plan: 1. do thing 1, 2. do thing 3, instead of just doing
thing 3 and assuming that thing 1 is still done.

Another difference is that the actions used in FF here
actually need to correspond with some code for executing
the action.

How was it implemented
The programs use the FF executable from problem set 2.
However, there is also an extensive amount of code
"around" the FF executable that senses the state of the
world, keeps track of the programs' goals, and generates
the right data files.

As mentioned earlier in the Overview section, step 2 of
the main loop is to "Run FF." Run FF consists of the
following steps: 1. Update the state of the world, 2.
Generate the goal state. 3. Execute FF. 4. Repeat step 2
until step 3 produces a plan or can't produce a plan that
moves toward the goal state.

The first step is to update the state of the world in order
to create a "Start State" for FF to work with. Some states
of the world are internal, while others need to be sensed.
For example, one state that would need to be sensed is
whether a certain file exists on the file system. This would
need to be checked again each time step 1 is run because
an external force could have deleted the file.

Each program maintains a list of goals that it wants to
achieve. Each goal also has a priority associated with it.
Some goals are pre-programmed into the system. New
goals can be added to the program during runtime.

The system uses a binary count to determine which
goal state it wants to pass to the FF executable. For
instance, let's assume that there are four actions: A, B, C,
and D (ordered in terms of highest priority to lowest
priority). The four digit binary numbers go 0000, 0001,
0010, 0011, ..., 1111.

0000 corresponds to the state that contains all four goal
states. So first, the system calls FF with the start state and
0000 as the goal state. If a plan is generated, then the
program moves on and executes the first action in the
plan. If FF says that the goal is already satisfied, then FF
moves on and does nothing, because it has already
reached it's goal state.

If no plan is generated, then the system calls FF with
0001. 0001 corresponds to the state that has the first 3
goals but not the last one. A zero in position n means that
goal n is in the goal state passed to FF, and a one in
position n means that goal n is not in the goal state passed
to FF. If 0001 returns a plan or returns true, then the
program moves on. If it returns false, then the program
tries FF with the next binary number.

If no combination of goals returns a plan or returns
true, then the program does nothing because no action it
can take will help it attain any of its goal states.

Executing Actions
I currently have Actions as a Java class. Each Action
contains a unique name, a list of parameters, a list of
preconditions, a list of effects, and also an
ExecutionPattern. ExecutionPattern currently has an
execution method that needs to be overwritten when
defining the Action.

The ExecutionPattern specifies how the Action can be
executed. So, if the execution method was overwritten
with a method that prints "Hello World," then executing
that Action would result in printing "Hello World."
Actions are executed when they are returned as the first
step of a FF plan.

The program currently does not allow the creation of
new Actions during runtime. However, this functionality
could be implemented as follows: The user tells the

4

program the code for a new Action. The program then
saves this code into a new file, compiles the file, and is
able to start using it.

The ability to add Actions during runtime (either by
having a user specify them, or eventually by having it
learn new Actions on its own) is important for the
program to be able to learn to do new things.

Control Panel Display of FF
The Control Panel allows the user to see what's going on
with each of the techniques during the run. For FF, the
user has five tabs to choose from. They can view a table
of the Goals, which lists the Goals, their priorities, and
whether they are satisfied. They can view a table of
Actions, which lists all the Actions the program knows of,
their preconditions, and their effects. They can view the
"Plan," which describes the current state, the current goal
state, the current generated plan, and a description of the
current Action. They can view the "FF pddl" file, which is
the list of Actions that the program passes to FF. Lastly,
they can view the "FF facts" file, which is the list of states
and objects that the program passes to FF.

The display is continuously updated. So for instance, if
the state changes, you can see it updated right away in the
"FF facts" file display. If the program had reached a
TRUE state (where it satisfied some goal, and couldn't do
better), but then the state changed so that a plan that could
lead to a better goal becomes possible, then the "Plan"
shown on the Control Panel is immediately updated to
show the new plan.

Sample Domain
The sample domain which FF was being used on here is
the "File Moving problem" that I came up with. In this
problem, there is a common directory that all programs
can look at. Each program wants to find a file with the
word "Flag" inside of it, and rename that file to become
the name of itself (the program's name). After it senses
the goal state, the program will carry out the "(say-it)"
action which makes it say "I win."

This problem fits the Computer-Grounded system,
because moving files is one thing that programs based on
a computer can do easily.

The goals in this domain are "(alive me)" and "(win-
game)." Actions include "(move ?x - file)," "(set-state-to-
win ?x)," and "(say-it)". The objects in the world are
entities (e.g. "me"), file names ("filename"), filenames
with the word "Flag" inside of them ("flag-files"), and
possible files ("potential-files").

Each time FF is called, it updates the objects in the
world. So, if the user is changing the contents of the
common directory, the user can see the changes reflected
in the objects list of the FF facts file immediately. The
program also updates whether each "file" object satisfies
the "(named-as-me ?x)" predicate. Then, it tries to
generate plans.

If the program finds a file named "flag" with the word
"FLAG" inside of it, then a sample plan might be to: 1.
rename the file, 2. declare a win. Step 2 then has the
effect of adding the goal "(say-win)," so this new goal is
added while step 2 is being executed. "(say-win)" is only
satisfied by the action "(say-it)," which also removes
"(say-win)" from the list of goals. This ensures that each
program only says "I win" once each time it wins.

When this problem is run with one program and one
flag-file, the program renames the flag-file. When it is run
with two programs and one flag-file, the programs go
back and forth each renaming the file, declaring a win,
then losing the file, and repeating. The user is able to see
this happening in terms of the continually changing plans
shown in the control panel. When it is run with two
programs and two flag-files, it settles into a state where
each program claims and renames one of the two flag-
files.

In this domain, the user is also able to join in the game
by going to that directory, and renaming files. For
instance, if there are two programs running and one flag-
file, then they will be fighting over the same flag-file.
However, I can put another flag file in that directory. A
directory listing ten seconds later usually reveals that my
new file has been renamed, and now each program has it's
own flag-file, so they are no longer fighting over the
original file.

In the future, this will be expanded so that FF handles
general actions across many more domains. The "File
Moving problem" was mainly to show how FF could work
at a basic level.

Future Work
The immediate future steps are to have FF add new
actions, and also to combine together some of the existing
techniques. Emotions needs to be combined with the other
techniques to give meaningful output. Combining FF with
the Knowledge Graph will allow Actions that involve
using the knowledge gained.

Longer term future work includes adding more
techniques (automated programming is especially relevant
to the Computer-Grounded domain) and combining
existing techniques more. Also, once the programs are
advanced enough, maybe they could have a society
structure where each gets assigned a different role, and
some have authority over others.

Contributions
The two main contributions of this project are that it:

1. Explored ideas relating to creating a Computer-
grounded AI system, including how to set up multiple
agents that can each learn, converse, plan, and take
actions at a basic level.

2. Implemented these ideas.

5

With respect to 6.834 project goals, this project took an
existing method, the FF planning system, and expanded
on it beyond what was done for class work.

References

Breazeal, C., (2001). Affective Interaction between Humans and
Robots. ECAL 2001: 582-591.

Brill, E., (1992). A Simple Rule-Based Part of Speech Tagger.
Proceedings of ANLP-92.

Hoffman, J., Nebel, B. (2001). The FF Planning System: Fast
Plan Generation Through Heuristic Search. Journal of Artificial
Intelligence Research 14, 253-302.

Lin, T. (2002). Analogical Inference over a Common Sense
Database. Proceedings of AAAI-02, 955-956.

Weizenbaum, J. (1966). ELIZA - A computer program for the
study of natural language communication between man and
machine. CACM 9, 36-45.

