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Abstract

Artificial intelligence has traditionally used constraint satisfaction and logic to frame
a wide range of problems, including planning, diagnosis, cognitive robotics and
embedded systems control. However, many decision making problems are now being
re-framed as optimization problems, involving a search over a discrete space for
the best solution that satisfies a set of constraints. The best methods for finding
optimal solutions, such as A*, explore the space of solutions one state at a time.
This paper introduces conflict-directed A*, a method for solving optimal constraint
satisfaction problems. Conflict-directed A* searches the state space in best first
order, but accelerates the search process by eliminating subspaces around each state
that are inconsistent. This elimination process builds upon the concepts of conflict
and kernel diagnosis used in model-based diagnosis[1,2] and in dependency-directed
search[3–6]. Conflict-directed A* is a fundamental tool for building model-based
embedded systems, and has been used to solve a range of problems, including fault
isolation[1], diagnosis[7], mode estimation and repair[8], model-compilation[9] and
model-based programming[10].

1 Introduction

The approach of focusing search based on summaries of logical inconsistency
is a venerable problem solving method within AI. These descriptions have
gone under various names, such as nogoods[3], conflicts [11,12,1], elimination
sets[6], or exclusion relations[13]; in this paper we use the term conflict. Past
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work has concentrated extensively on using conflicts to find a solution that is
consistent with a set of constraints. Consistency, however, says nothing about
the quality of the solution. Hence, AI is shifting increasingly towards problem
formulations that involve finding a set of best solutions, given a utility function
that measures the quality of the solution. The task of generalizing conflict-
directed search to handle constraint-based optimization problems is an open
research frontier. In this paper we demonstrate how conflicts, when combined
with A* search, provide a powerful method for finding optimal solutions to
discrete constraint satisfaction problems. We call this method conflict-directed
A*.

One of the earliest systems to exploit conflicts is Hacker [14], a repair-based
planner that eliminates conflicts between a set of goals and a proposed plan.
Subsequently, conflicts between current and intended states have been used to
focus problem solving in a broad range of applications, including circuit analy-
sis[3], diagnosis[12,11,1,15–17], qualitative reasoning[18,19], planning, schedul-
ing[20], constraint satisfaction[4,6] and propositional inference[21]. In these
approaches a conflict takes on many forms, such as a discrepancy between a
solution and a goal, a hypothesis and a set of observables, or a set of constraints
that are logically inconsistent.

Methods that use conflicts to focus search fall into three basic paradigms.
Systematic, backtrack search methods use conflicts extensively to select back-
track points. Examples include dependency-directed backtracking [3], intelli-
gent backtracking, conflict-directed backjumping[22] and dynamic backtrack-
ing[6].

Conflicts have proven equally useful for guiding local search. Representative
examples include Hacker[14] for planning, Min-Conflict for constraint satisfac-
tion [20], and GSAT or WalkSat for propositional satisfiability[21,23,24]. In
these approaches a local operator is selected based on the number of conflicts
it eliminates.

Conflict-directed A* builds upon a third approach, which uses conflicts to solve
constraint satisfaction problems using divide and conquer. We will refer to this
as conflict-directed divide and conquer (CDC). CDC plays an integral role in
the General Diagnostic Engine (GDE) [1], and has been incorporated within
a range of diagnostic methods [17]. GDE frames diagnosis as a constraint
satisfaction problem that involves finding assignments of modes to components
that are consistent with a device model and a set of observations. CDC begins
by searching in parallel for all “smallest” partial assignments that produce
an inconsistency. These partial assignments are called conflicts. The set of
conflicts are then combined to produce compact descriptions of all feasible
states, called kernel diagnoses. The key feature of CDC is its ability to reason
intensionally about collections of states rather than states individually. This
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reduces the effective size of the search space explored.

A significant limitation of CDC is that many practical applications only require
one or a few best solutions, rather than all solutions. In this case CDC’s
approach of generating all solutions and all conflicts in parallel can waste
significant effort. This limitation is exacerbated by the fact that the set of
abstract descriptions – conflicts and kernel diagnoses – grows exponentially
in the worst case. Hence in the model-based diagnosis community, CDC fell
increasingly to the wayside during the 90’s, being replaced by methods that
enumerate the state space in best first order [7,25,8].

Research on these best first enumeration methods have grappled with three
key questions:

• Can we use conflicts to effectively reason about classes of states, when we
are only interested in a few best solutions, not all solutions?
• Can theories of diagnosis based on conflicts and kernel diagnoses be rigor-

ously unified with theories of diagnosis as best-first search?
• Can general purpose, conflict-directed methods for solving constraint sat-

isfaction problems (CSPs) be unified with informed methods for best-first
search?

We resolve these questions in this paper by first defining a family of problems
called Optimal Constraint Satisfaction Problems (see Section 3). An optimal
CSP is a multi-attribute decision problem whose decision variables are con-
strained by a set of finite domain constraints. We focus on the solution to op-
timal CSPs whose attributes are preferentially independent, a property shared
by most practical multi-attribute decision problems.

We then introduce conflict-directed A*, a method for solving Optimal CSPs
that satisfy preferential independence. Like A*, this approach tests a sequence
of candidate solutions in decreasing order of utility. It differs from A* in that
it uses the sources of conflict identified within each inconsistent candidate to
jump over related candidates in the sequence. In practice this has lead to a
dramatic decrease in the number of states visited over an A* approach we
introduce, called constraint-based A*, that does not exploit conflicts.

Variants of this algorithm have been demonstrated on the control of a vari-
ety of embedded and autonomous systems, including the task of monitoring
the health of a robotic astronaut, and the repair of a 100 million dollar deep
space probe, 6 light minutes from earth [8,26]. Variants have also been used
to perform such tasks as model compilation [9], diagnosis[1], mode estima-
tion[7,27,28], and hardware reconfiguration and repair[8–10]. This paper sum-
marizes how a range of these tasks have been formulated as Optimal CSPs.

This paper presents a method for incorporating conflict-directed reasoning
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into a pervasive family of discrete, constrained optimization problems. In two
related papers we demonstrate how conflicts can be used to help accelerate
the solution of two major families of continuous optimization problems. The
first paper, [29], describes a method, called activity analysis, that solves non-
linear, constrained optimization problems by ruling out portions of the state
space that are sub-optimal. These subspaces are described by the conflicts of
a qualitative version of the Karush Kuhn-Tucker conditions of optimality.

The second paper, [30], describes a method, called decompositional model-based
learning, which uses conflicts to solve maximum likelihood problems, such as
parameter estimation, state estimation and model-based learning. This ap-
proach accelerates the learning process by using algebraic versions of conflicts,
called dissents, to decompose the learning problem into a set of simpler, but
overlapping sub-problems.

The remainder of this paper is structured as follows. In Section 2 we intro-
duce the conflict-directed A* algorithm informally, first describing its role in
creating model-based embedded systems that reason at reactive time-scales,
and then stepping through the algorithm on a simple example called Boolean
polycell. In Section 3 we define optimal constraint satisfaction (OCSP) and op-
timal proposition satisfiability (OpSat) problems, and introduce the property
of mutual preferential independence. In Section 4 we develop an algorithm for
solving Optimal CSPs, called constraint-based A*, which leverages the prop-
erty of preferential independence. In Section 5 we develop an algorithm, called
Next-Best-Kernel, that uses A* search to quickly find the region of state space,
called a kernel, that contains the best utility state that resolves the known con-
flicts. In Section 6 we present the conflict-directed A* algorithm, which uses
conflicts to jump over leading states that are proven inconsistent. This method
unifies constraint-based A* and Next-Best-Kernel, developed in the two pre-
ceding sections. Finally, in Section 7 we discuss experimental results on the
performance of constraint-based A* and conflict-directed A* applied to both
randomly generated problems and space applications.

2 Conflict-directed A* Without Tears

This section provides an informal development of optimal CSPs, their solution
through conflict-directed A*, and their application to model-based embedded
systems.
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2.1 A Pictorial View of Conflict-directed A*

A* is often the method of choice for finding optimal solutions to discrete
state space search problems, particularly those framed as graph search. A*
generates and tests states in decreasing order of estimated utility, typically
called heuristic cost. This process is depicted in Figure 1.

Inconsistent

Consistent

Decreasing
Cost

S1 S2 S3

S4 S5 S6

S7 S8 S9

Fig. 1. A* Search examines all best cost states leading up to the first consistent
state.

An admissible heuristic is optimistic, it never under estimates utility. For an
admissible heuristic, A* has the key property that it is guaranteed to return
an optimal feasible solution, if such a solution exists. A* is efficient in that it
explores no search state with estimated utility less than the optimum.

However, to guarantee that its solution is optimal, A* visits every state whose
estimated utility is greater than the true optimum. The number of states
visited can be unacceptable for many practical problems, such as model-based
embedded control systems that perform best first search within the reactive
control loop [8,9,27,28,10].

Conflict-directed A* solves optimization problems that include a set of decision
variables y that must be assigned values that maximize a utility function g.
In addition, the assignment must satisfy a set of finite domain constraints on
y, framed as a CSP. Conflict-directed A* guides its search using descriptions
of states that are inconsistent with the CSP, called conflicts. Intuitively, a
conflict denotes a set of states, all of which are proven inconsistent using the
same proof. For example, we might deduce from a model that any state that
has a shorted voltage regulator will produce the same symptom, such as a
particular voltage being too low. We say that a state contained by a conflict
manifests the conflict, and a state not contained by a conflict resolves the
conflict.
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Fig. 2. Conflict-directed A* focuses search using a set of known conflicts. It jumps
over the best inconsistent states, by searching only over the best cost states that
resolve all known conflicts. a) - d) represent snapshots along a prototypical search.
Circles represent states. Filled in circles have been tested for consistency. Regions
in grey have been ruled out by conflicts. Only state S9 is consistent.

A pictorial example is shown in Figure 2. Conflict-directed A* first selects
state S1, which proves inconsistent. This inconsistency generalizes to Conflict
1, which eliminates states S1, S2 and S3 (Figure 2a). Conflict-directed A*
then tests state S4 as the best cost state that resolves Conflict 1. S4 tests
inconsistent and generates Conflict 2, thus eliminating states S4 - S7 (Figure
2b). Next, conflict-directed A* tests state S8, which is the best cost state
that resolves both Conflicts 1 and 2. S8 proves inconsistent as well, producing
Conflict 3 (Figure 2c). The search finally tests state S9 and finds it consistent.
Hence, S9 is an optimal solution (Figure 2d).

The result of conflict-directed A* in this pictorial example is to test three of
the leading inconsistent states – S1, S4 and S8 – while jumping over five lead-
ing inconsistent states: S2, S3, S5, S6 and S7. The saving has proven much
more dramatic in real world examples. For example, consider the problem of
reconfiguring the main engine system of the Cassini Saturn space probe, which
was performed in simulation by the Livingstone system [31]. The reconfigura-
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tion task consists of finding a minimum cost set of component modes, such as
closing valves and turning on drivers, that can be shown to thrust the engine
system while maintaining a set of safety constraints. The state space consists
of roughly 480 states. Using conflict-directed A*, less than a dozen candidate
states are tested in order to find an optimal solution (Section 7).

Next Best State
Resolving
Conflicts

Constraint
Solver

Conflict Database

Decision State

Consistent?

Extract Conflicts

Solutions

Known Conflicts
(irredundant)

Fig. 3. Block diagram of Conflict-directed A* as generate and test. The generator
produces candidates that resolve the current conflicts in best first order. Candidates
are tested for constraint satisfiability using any CSP solver that is able to extract
and return conflicts.

Figure 3 offers an alternative view of conflict-directed A* as interleaved best
first generate and test. The generator is updated with the currently known
conflicts, and returns, as a candidate, the best valued decision state that re-
solves all conflicts. The candidate is tested using a CSP algorithm that is
able to determine satisfiability and is able to extract one or more conflicts
from the candidate when the candidate proves inconsistent. It is important to
note that conflict-directed A* makes minimal committments to the form of
the CSP solved and the CSP algorithm applied. It simply requires that the
decision variables range over a finite domain and that the CSP algorithm has
the ability to extract conflicts. Hence conflict-directed A* makes it easy to
augment a range of CSP solvers to solve Optimal CSP problems.

2.2 Enabling Model-based Embedded Systems

Conflict-directed A* is at that core of our approach to creating a new gener-
ation of model-based embedded systems that achieve robustness by reasoning
extensively at reactive time scales. In this section we outline the link between
conflict-directed A* and model-based embedded systems.

Embedded systems, such as automobiles and building control systems, have
dramatically increased their use of computation to achieve unprecedented lev-
els of robustness, with little human support. An extreme example of this class
of embedded systems is a fleet of intelligent space probes that autonomously
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explore the nooks and crannies of the solar system. These systems must op-
erate robustly for years with minimum attention. To accomplish this an em-
bedded system may need to radically reconfigure itself in response to failures,
and then navigate around these failures during its remaining operation.

The space of potential failures an embedded system may be faced with over its
lifespan is far too large for a programmer to successfuly pre-enumerate. Hence
the embedded system needs to automatically diagnose and plan courses of
action for itself. We accomplish this by creating increasingly powerful, model-
based reactive systems[8–10,27,32] that perform significant deduction within
their sense/response loop. At the core of each of our model-based reactive
systems is OpSat, an algorithm that quickly deduces optimal responses. OpSat
is a unification of our work on online propositional inference [33] and the
conflict-directed A* algorithm presented in this paper.

Executive

Command

Configuration Goals

Observations

State
Estimates

Mode
Selection

Mode
Estimation

S
^

Reactive
Planning

State Goals

Flight System Control

RT Control Layer

Flight Control
Software

Physical Plant

Titan

Plant Model

c d
e

e
ddc d

e

e
ddc d

e

e
ddc

d
e

compiles to
Hierarchical

Constraint Automata

d d

e

OrbitInsert ()::
( do-watching

((EngineA= ThrustingOR
EngineB= Thrusting

(parallel
(EngineA= Standby)
(EngineB= Standby)
(Camera = Off)

(do-watching (EngineA= Failed)

(when- donext( (EngineA= Standby) AND
(Camera = Off) )

(EngineA= Thrusting)

(when- donext( ( = Failed)AND
( EngineB= Standby) AND
(Camera = Off) )

(EngineB= Thrusting ))

(

EngineA

Model-based
Program

Fig. 4. Model-based Programming and Execution.

We view a model-based embedded system as consisting of a strategic compo-
nent coupled to a low-level reactive control system. The strategic component
provides high-level guidance by describing the desired evolutions of the sys-
tem’s variables, such as engine thrust, in terms of a sequence of configuration
goals.

In the Remote Agent system [26], flown on the NASA Deep Space One probe,
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these state evolutions are deduced by a temporal planner that operates on
models of operational constraints. In our Titan system [10], being developed
for the Air Force Tech Sat 21 multi-spacecraft mission [34], the programmer
specifies these state evolutions by writing an embedded program, called a
model-based program, that is able to read and write hidden state variables of
the physical system (top of Figure 4). In the Kirk system [32] we take a middle
ground, allowing the programmer to specify model-based programs contain-
ing alternatives that are chosen at runtime using a fast variant of temporal
planning.

The reactive control system automatically moves along a trajectory that achieves
the configuration goals. Reactive control is achieved using a model-based exec-
utive that generates a sequence of control actions based on knowledge of the
current state, current configuration goals and a model of the physical system
being controlled (bottom of Figure 4). A control action is a control variable
assignment, for example, corresponding to closing a switch or sending a reset
message across a bus. The current state is (partially) observable through a set
of variables corresponding to sensors.

A model-based executive continually tries to transition the system towards a
lowest cost state that satisfies the desired goals. When the physical system
strays from the specified goals due to failures, the executive analyzes sensor
data to identify the current state of the system, and then moves the system
to a new state which, once again, achieves the desired goals. The executive
is reactive in the sense that it reacts immediately to changes in goals and
to failures, i.e., each control action is incrementally generated using the new
observations and configuration goals provided in each state.

As an example consider the problem of controlling the Cassini spacecraft as
it inserts itself into Saturn’s orbit. The executive is responsible for executing
the configuration goals generated by the model-based program, shown in the
upper left corner of Figure 4. One configuration goal to be achieved during this
maneuver is to thrust Engine A. A series of idealized schematics of the main
engine subsystem of Cassini are shown in Figure 5. It consists of two propellant
tanks, two main engines (A on the left and B on the right), redundant latch
valves and pyro valves. When propellant paths to a main engine are open,
the propellants flow into the engine and produce thrust. The pyro valves are
used to isolate parts of the engine. They can open or close only once, and are
more costly to use than the latch valves. The system offers a wide range of
configurations for achieving the goal of producing thrust.

To start, both engines are shut down (Figure 5 a). The model-based program
first requests the left main engine to produce thrust. The model-based ex-
ecutive deduces that this may be accomplished by opening the latch valves
leading to it (Figure 5 b). Suppose now that engine A fails to provide the de-
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Fire backup
engine

Valve fails
stuck closed
Valve fails

stuck closed

Open four
valves

Open four
valves

a) b)

c) d)

Fig. 5. Diagnosis and repair sequence for a simplified Cassini spacecraft. Pyro valves
have horizontal bars through them. A valve is closed if filled in, otherwise, it is open.
The faulty valve is circled.

sired thrust. The executive diagnoses the cause of failure, e.g., that the right
latch valve going into engine A is stuck closed (Figure 5 c). The executive
then searches for an alternate set of component modes that achieve the goal
of thrusting engine A. This search fails because of the stuck valve, hence the
program advances to the configuration goal of thrusting engine B. The ex-
ecutive decides that the least costly way to achieve this goal is to fire the
two pyro valves leading to Engine B, and to open the remaining latch valves
(rather than firing additional pyro valves (Figure 5 d)).

Using a model of the physical plant, a model-based executive determines the
desired control sequence in three stages—mode estimation (ME), mode se-
lection (MS) and reactive planning (RP). ME and MS setup the planning
problem, identifying initial and target states, while RP reactively generates a
plan solution. More specifically, ME incrementally generates the set of most
likely plant trajectories consistent with the plant transition model and the
sequence of observations and control actions. This is maintained as a set of
most likely current states. MS uses a plant transition model and the most
likely current state generated by ME to determine a reachable target state
that satisfies the goal configuration. RP then generates the first action in a
control sequence for moving from the most likely current state to the target
state. After that action is performed ME confirms that the intended next state
is achieved. ME is discussed in [8,28,27] while MS and RP are discussed in [9].

OpSat and its underlying conflict-directed A* algorithm play a central role in
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implementing each of the components – mode estimation, mode selection and
reactive planning. OpSat solves optimization problems of the form

arg min f(x)
s. t. CS(x) is satisfiable,

CU(x) is unsatisfiable,

where CS is a conjunction of propositional clauses that must be satisfied by
the solution x, and CU is a conjunction of propositional clauses that must not
be satisfied by x.

Mode estimation selects, at each time step, a most likely set of component
mode transitions that are consistent with the plant model and current obser-
vations. As discussed in [8], ME is framed as an OpSat problem, roughly of
the form

arg minPt(m′),
s. t. M(m′) ∧O(m′) is satisfiable,

where m′ is a set of component modes the system can transition to, Pt is
a transition probability, M is the plant model and O is the current set of
observations.

Mode selection chooses, at each time step, a least cost set of reachable com-
ponent modes that is consistent with the model and that entails the current
configuration goals, as discussed in [9]. MS is framed as an OpSat problem,
roughly of the form

arg maxRt(m′)
s. t. M(m′) is satisfiable,

M(m′) entails G(m′),

where Rt is the cost of transitioning to mode m′, G is a conjunction of con-
figuration goals, and the constraint “M(m′) entails G(m′)” is equivalent to
M(m′) ∧ ¬G(m′) being unsatisfiable.

Finally, the reactive planner (RP) generates a compact encoding of a univer-
sal plan at compile time. The first step of this process involves compiling the
model into a set of automata that eliminate any reference to intermediate vari-
ables. As discussed in [9], OpSat is used to compile the model, by generating
the complete set of prime implicates of the model that only refer to control
assignments, current and next mode assignments.

To summarize, conflict-directed A* and OpSat play a central role in devel-
oping model-based embedded systems, both during runtime, through state
estimation and control, and at design time, through model compilation.
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2.3 The Diagnosis of Boolean Polycell as an Optimal CSP
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Fig. 6. The Boolean polycell example consists of three OR gates and two AND
gates. Input and output values are observed as indicated.

Model-based embedded systems demonstrate a powerful application of Op-
timal CSPs and conflict-directed A*. However, Optimal CSPS and conflict-
directed A* are best understood using a simple, pedagogical example. During
the remainder of this paper we focus on the diagnosis of a boolean variant of
the venerable polycell circuit, which was first introduced in [11]. Our Boolean
version of polycell consists of three OR gates and two AND gates, as shown in
figure 6. The assignment of values to the input variables, A, B, C, D and E,
and output variables, F and G, are observed as indicated on the figure. We
denote this assignment OBS.

We frame this as a multiple fault diagnosis problem similar to that of [1]. We
assume that each component is in one of two possible modes, good or broken.
If a component is good (denoted G) then it correctly performs its boolean
function. If a component is broken (denoted U) then no assumption is made
about its behavior. This “Unknown mode” captures the concept of constraint
suspension, introduced by Davis[12].

Using the terminology of model-based diagnosis, an assignment of modes to
components is called a candidate. A diagnosis is a candidate that is consistent
with a model of Boolean polycell and the set of observations. For example,
given the observations of figure 6, a diagnosis for Boolean polycell is

{O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}.

This diagnosis is shown in Figure 7.

For most diagnosis problems a large percentage of the candidates are diag-
noses. For example, Boolean polycell has 27 diagnoses out of 32 possible can-
didates. The reason for this is that the Unknown mode imposes no constraint.
Thus a candidate with a number of U ’s often results in an under constrained
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Fig. 7. Boolean polycell for the consistent diagnosis {O1 = U, O2 = G, O3 = G,
A1 = G, A2 = G}. The unknown mode for O1 is depicted by removing compo-
nent O1 from the figure. Values predicted by the model are placed in boxes, and
dependencies between predictions are indicated by arrows.

model that is easily satisfied. Consequently, the large set of diagnoses results
in poor diagnostic discrimination and computational intractability.

We have addressed this problem in the past [7,1] by shifting to a Bayesian ap-
proach that ranks diagnoses based on probability and identifies only the most
likely diagnoses. The key consequence of this shift is to turn diagnosis from a
constraint satisfaction problem into a constrained optimization problem.

Systems like GDE and Sherlock [7,1] rank diagnoses based on the probability
of the candidate conditioned on the set of observations. They assume that
failures are independent and use the model to estimate the probability of
an observation, given a candidate. For simplicity of presentation we rank di-
agnoses based on prior probability and assume that component failures are
independent. That is,

g(y) =
∏
i

Pi(yi),

where Pi is a probability mass function denoting the a priori probability that
component i is in each of its modes. Note that any realistic implementation
of a diagnostic engine based on conflict-directed A* will readjust these priors
to posterior probabilities, for example, as outlined in [7].

For this example we assume that OR gates have a 1% probability of failure and
that AND gates have a .5% probability of failure. That is, P (On = G) = .99,
P (On = U) = .01, P (An = G) = .995 and P (An = U) = .005. These
probabilities have the property that OR gates are more likely to fail than
AND gates. Components are two orders of magnitude more likely to work
than to fail. All single faults are more likely than any double fault, all double
faults are more likely than triple faults, and so forth. In addition, given the
choice of two mode assignments with equal probability, we always select the
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assignment with the component that has the higher number. For example,
given a choice between equally probable assigments O1 = G and O2 = G, we
select O2 = G first. This is for consistency of presentation.

The diagnosis of Boolean polycell is an instance of an optimal CSP. An optimal
CSP consists of a set of decision variables, y, ranging over a finite domain of
values, Dy, a utility function on the decision variables, g : y→ �, and a set of
constraints that the decision variables must satisfy, Cy : y → {True, False}.
For Boolean polycell the decision variables are components, its domain is the
set of candidate component modes, the utility function is mode probability
P (y), and the constraint is that the solution must be consistent with the
component model Φ and observations OBS.

The solution to the optimal CSP is the set of n leading candidates, ranked
by decreasing g, that satisfy the constraints. For Boolean polycell the leading
solutions in decreasing order of likelihood are

Diagnosis 1: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G},

Diagnosis 2: {O1 = G,O2 = G,O3 = G,A1 = U, A2 = G}, and

Diagnosis 3: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = U}.

These correspond, respectively to only O1 being broken, only A1 being broken,
and both O2 and A2 being broken.

2.4 Conflict-directed A* Jumps Over Conflicts

Next we use Boolean polycell to demonstrate how conflict-directed A* jumps
over most of the leading candidates that are inconsistent, while guaranteeing
optimality. As a point of reference, first suppose we generate the leading di-
agnoses by generating each candidate in best first order, and by testing its
consistency against the model Φ and observations OBS. Generating the three
single and double fault polycell diagnoses, given above, would require testing
roughly 52 = 25 candidates, triple faults would take 53 = 125, and n faults
would take O(5n). This cost is prohibitive for many systems, such as those
that solve Optimal CSPs within the sense/act loop of an embedded system.
In contrast, conflict-directed A* is able to find all single and double faults
while only visiting two inconsistent states.

The top-level procedure for conflict-directed A* is shown in Figure 8. Conflict-
directed A* searches candidates in decreasing order of utility. It tests each can-
didate S for consistency against the CSP using function Consistent?. When
S tests inconsistent, Extract-Conflicts generalizes the inconsistency to one or
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function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.
Conflicts[OCSP] ← {}
OCSP ← Initialize-Best-Kernels(OCSP)
Solutions[OCSP] ← {}
loop do

decision-state ← Next-Best-State-Resolving-Conflicts(OCSP)
if no decision-state returned or

Terminate?(OCSP)
then return Solutions[OCSP]

if Consistent?(CSP[OCSP], decision-state)
then add decision-state to Solutions[OCSP]

new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state)
Conflicts[OCSP] ←

Eliminate-Redundant-Conflicts(Conflicts[OCSP] ∪ new-conflicts)
end

Fig. 8. Top level loop of Conflict-directed A*.

more conflicts, each denoting states that are inconsistent in a manner similar
to S. Conflict-directed A* keeps track of all discovered conflicts as a record of
known inconsistent states, while using Eliminate-Redundant-Conflicts to re-
move conflicts that offer no additional information. Conflict-directed A* then
uses Next-Best-State-Resolving-Conflicts to jump over these states, and gener-
ates the next best state S ′ that resolves all conflicts discovered thus far. This
process repeats until the desired set of leading solutions is found, as deter-
mined by Terminate?, or all states are eliminated. We next walk demonstrate
the execution of the outer loop of conflict-directed A* for Boolean polycell.

2.4.0.1 First Candidate – All Components Okay: When conflict-
directed A* starts, no conflicts have been discovered, hence all states are under
consideration. Conflict-directed A* generates the most likely candidate,

Candidate 1: {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G},

which specifies that all components are working correctly. This candidate has
probability .99× .99× .99× .995× .995 = .961.

Next Candidate 1 is tested for consistency against the model and observa-
tions (Figure 9). Constraint solvers typically identify inconsistencies through
a combination of backtrack search and constraint propagation. For example,
the DPLL algorithm uses search and unit propagation to test the satisfiability
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Fig. 9. Candidate 1, {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G},
tests inconsistent. Predicted values are placed in boxes, and the discrepancy be-
tween predicted and observed values for F is circled. Dependencies between pre-
dicted values are denoted with arrows. Conflict-directed A* extracts Conflict 1,
{O1 = G,O2 = G,A1 = G}. The components in the conflict are highlighted, and
are extracted from the indicated dependencies.

of propositional constraints[35]. More specifically, given that O1 and O2 are
good, propagation would conclude from inputs A − D that X and Y are 1.
Next, A1 is Good, X = 1 and Y = 1 are used to conclude that output F is 1.
This prediction is inconsistent with the observation F = 0, hence Candidate
1 is eliminated as a solution. The results of these propagations are shown in
Figure 9, including the values predicted and dependencies recorded between
these predictions.

Next this inconsistency is generalized to a conflict. A conflict of a candidate
is a subset of the candidate’s assignments that is sufficient to produce an
inconsistency with the constraints. A conflict is extracted from Candidate 1
using reductio ad absurdum. In particular, we concluded above from O1 = G,
O2 = G and A1 = G, that F = 1, which conflicts with observation F = 0.
Hence our first conflict is the partial assignment

Conflict 1: {O1 = G,O2 = G,A1 = G}.

This conflict may be extracted by tracing backwards through the dependencies
that were generated by propagation, and accumulating the assignments to y
(the mode assignments) that appear along the path.

2.4.0.2 Jump to Second Candidate – OR Gate O2 broken: Next,
conflict-directed A* jumps over any leading candidates that contain a known
conflict as a subset, and jumps down to the next best candidate that resolves
all known conflicts. A candidate is said to resolve a conflict if it does not
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Fig. 10. Candidate 2, {O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}, tests inconsis-
tent. Conflict-directed A* extracts Conflict 2, {O1 = G,A1 = G,A2 = G}, which is
the set of mode assignments used to detect the symptom. This figure is annotated
similar to Figure 9.

contain that conflict as a subset. A conflict is resolved by changing one of the
assignments in the conflict to a different value, and by including this change
in the new candidate. To this end, conflict-directed A* jumps over state

{O1 = G,O2 = G,O3 = U, A1 = G,A2 = G},

since it contains Conflict 1 as a subset. It generates the next best state as,

Candidate 2: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}

with probability .99× .01× .99× .995× .995 = .0097.

This candidate resolves

Conflict 1: {O1 = G, O2 = G , A1 = G}

by changing O2 = G to O2 = U. We discuss the process of generating candi-
dates from conflicts in the next subsection.

Conflict-directed A* then tests Candidate 2 against the constraints, proving
it inconsistent (see Figure 10). The constraint solver uses input A = 1 and
O1 = G to conclude that X is 1. In addition, output G = 1 and A2 = G are
used to conclude that A2’s input, Y , is 1. Finally, A = 1 and A1 = G are used
to conclude that output F is 1, which is inconsistent with observation F = 0.
This eliminates Candidate 2 and produces the conflict,

Conflict 2: {O1 = G,A1 = G,O2 = G}.
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The predicted values and dependencies are shown in Figure 10.

2.4.0.3 The Third Candidate is a Diagnosis – OR Gate O1 broken:
As the third candidate, conflict-directed A* selects the next consecutive can-
didate,

Candidate 3: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G},

which has probability .99 × .01 × .99 × .995 × .995 = .0097, the same as
Candidate 2.

This candidate resolves both Conflict 1 and Conflict 2,

Conflict 1: { O1 = G , O2 = G,A1 = G}

Conflict 2: { O1 = G , A1 = G,O2 = G},

by changing assignment O1 = G to O1 = U. Candidate 3 is tested, as depicted
earlier in Figure 7, and proves consistent. Hence, Candidate 3 is our best
diagnosis. No conflict is extracted.

2.4.0.4 Finding the Remaining Diagnoses Involves no Search: Up
until this point conflict-directed A* has tested the consistency of three candi-
dates, one of which is a diagnosis, and has jumped over one candidate. This is
a modest savings over traditional A*. However, the initial phase of the search
is typically invested in discovering conflicts, while the reward is reaped dur-
ing the rest of the search. In particular, after testing the first two candidates,
conflict-directed A* has discovered all conflicts for this example. Hence at
this point conflict-directed A* has sufficient knowledge to generate all remain-
ing diagnoses without generating any additional inconsistent candidates. The
next two candidates generated by conflict-directed A* are the two remaining
diagnoses listed at the end of Section 2.3,

Diagnosis 2: {O1 = G,O2 = G,O3 = G,A1 = U, A2 = G} and

Diagnosis 3: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = U}.

These two diagnoses are depicted in Figure 11.

To summarize, the three leading diagnoses were generated by jumping over
19 inconsistent candidates and by explicitly considering only two inconsistent
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Fig. 11. Candidates 4 and 5 correspond to Diagnoses 2 and 3, respectively. a)
Diagnosis 2: {O1 = G,O2 = G,O3 = G,A1 = U, A2 = G}. b) Diagnosis 3:
{O1 = G,O2 = U, O3 = G,A1 = G,A2 = U}. No conflicts are detected. Unknown
modes are depicted by removing corresponding components, and predicted values
are placed in boxes.

candidates. If we measure search efficiency as

Solutions Found
Candidates Tested

then traditional A* has efficiency 3
21 = 14%, while conflict-directed A* has

efficiency 3
5 = 60%. Even for this simple example the improvement is dramatic.

2.5 Generating the Best Non-Conflicting Candidate

The key to conflict-directed A* is the ability to efficiently generate, at each it-
eration, the next best candidate that resolves all known conflicts. This involves
combining conflict-directed divide and conquer, described in the introduction,
together with A* search. We provide the intuition behind this generation pro-
cess in this section, offering a more rigorous development in Sections 4, 5 and
6.

The first idea behind candidate generation is to map known conflicts, de-
scribing inconsistent states, to partial assignments, called kernels. Each kernel
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describes a set of states that resolve the known conflicts. 2 The best cost state
is extracted from these kernels. Our mapping from conflicts to kernels is closely
related to the candidate generation algorithm introduced within the General
Diagnostic Engine [1].

For example, recall that we discovered two conflicts for Boolean polycell. A
kernel for these two conflicts is

Kernel 1: {O1 = U}.

Assignment O1 = U is sufficient to resolve both Conflict 1 and 2, since it
eliminates the possibility for O1 = G, which appears in both conflicts,

Conflict 1: { O1 = G , O2 = G,A1 = G} and

Conflict 2: { O1 = G , A1 = G,A2 = G}.

{{A1 = U}, {O1 = U}, {O2 = U}}

{{A1 = U}, {A2 = U}, {O1 = U}}

Constituent Kernels

Kernels

{A1 = U}

{O1 = U}

{A2 = U, O2 = U}

Conflicts

{A1 = G, O1 = G, O2 = G}

{A1 = G, A2 = G, O1 = G}

Fig. 12. Conflict-directed A* generates the set of kernels that resolve all conflicts.
Each conflict is first mapped to a set of constituent kernels, which resolve that
conflict individually. Kernels are generated from the constituents by minimal set
covering.

We generate kernels through divide and conquer. The first step generates con-
stituent kernels, which resolve each conflict alone. The second step generates
kernels that resolve all conflicts, by computing the minimal set covering of the
constituent kernels. Each combined kernel has the property that it contains a
constituent kernel for every conflict, hence all conflicts are resolved. For ex-
ample, the constituent kernels for each of Conflict 1 and 2 are shown at the
top of figure 12. The three kernels resolving both conflicts are generated by
minimal set covering, and are shown at the bottom of the figure.

2 The concept of kernel is generalized from kernel diagnosis, introduced in [2].
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O1=U A2=U A1=U

O2=U O1=U A1=U

{{O2 = U}, {O1 = U}, {A1 = U}}

{ {O1 = U}, {A2 = U}, {A1 = U}}

Constituent Kernels

For Conflict 2:

For Conflict 1:

Fig. 13. A search tree created by Conflict-directed A* to identify all kernels. Nodes
crossed off are visited nodes that are not kernels, either because they contain too
many assignments or inconsistent assignments. Nodes that cover the kernels of both
conflicts are check marked. Note that the two nodes to the right are not extended
after covering Conflict 1, since their one assignment is sufficient to cover Conflict 2.

The problem with the approach of generating all kernels is that an exponen-
tial number of kernels may be involved. However, we are only interested in the
kernel containing the best utility state. Hence, as we search for the kernel con-
taining the best utility state, we want to explicitly enumerate as few kernels as
possible. To accomplish this we frame kernel generation as best-first search,
using A* to focus the search towards the kernel that contains the best as-
signment. This search combines minimal set covering with a constraint-based
variant of A* search that we will introduce in Section 4.

A search tree for Boolean polycell is shown in Figure 13. The leaves of the tree
are kernels which represent minimal coverings of the constituent kernels, and
intermediate nodes represent partial coverings. For example, the bottom left
leaf denotes kernel {O1 = U, O2 = U} and its parent denotes {O2 = U}. A
search tree node is expanded by selecting the constituent kernels of a conflict
that has not already been resolved by that node, and then creating a child node
for each constituent kernel of that conflict. For example, the root node does
not resolve Conflict 1 or 2. Selecting Conflict 1, the children of the root node
in Figure 13 are the constituent kernels of Conflict 1, which are {O2 = U},
{O1 = U} and {A1 = U}. The first and third leaves on the bottom left are
eliminated as non-minimal, since they are supersets of the kernels {O1 = U}
and {A1 = U}, respectively.

Next consider the portion of the Boolean polycell search tree expanded af-
ter the generation of each candidate, Candidates 1, 2 and 3. Details of the
algorithm that guides this search is developed in Section 6.

Figure 14 shows the tree when Candidate 1 is generated. At this point there
are no conflicts and one kernel, {}, indicated by an arrow. We generate a
candidate by assigning the remaining unassigned variables. To accomplish
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None

Constituent Kernels{}

Fig. 14. Conflict-directed A* tree expansion corresponding to Candidate 1. No con-
flicts exist, hence the root node, denoting the empty assignment, resolves all con-
flicts. An open circle indicates an unexpanded node.

this we exploit a property called mutual, preferential independence (MPI).
MPI says that to find the best candidate we may assign each variable the
value with the best utility in its domain, independent of the values assigned
to the other variables. This property is developed in depth in Section 3.2. The
best candidate contained by the kernel {} assigns the most likely value, G, to
each of the unassigned variables, resulting in a combined probability of .961.
Hence Candidate 1 has all components working,

Candidate 1: {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}.

O2=U

{{O2 = U}, {O1 = U}, {A1 = U}}

Constituent Kernels

For Conflict 1:

{}

Fig. 15. Conflict-directed A* tree expansion corresponding to Candidate 2. The
arrow indicates the node that is the kernel of Candidate 2. A closed/open circle
indicates an expanded/unexpanded node. Note that only the best valued child of
the root is expanded, not all children.

Figure 15 shows the tree when Candidate 2 is generated. At this point only
Conflict 1 has been discovered, hence the set of kernels correspond to the
constituent kernels of Conflict 1. An arrow indicates the kernel containing
the most likely candidate, which is {O2 = U}. The probability of {O2 =
U} is .01 and the estimated best probability for the unassigned variables is
.99× .99× .995× .995 = .97, resulting in a combined probability of .0097 for
the best candidate of the kernel. Note that this tree only expands the best
valued child of {}, which is {O2 = U}. This is because MPI guarantees that
{O2 = U} contains a state whose utility is at least as good as that of every
state contained by the other children, such as {O1 = U}. {O2 = U} is a
kernel, since it resolves all known conflicts. The best state that expands this
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kernel has only O2 broken; the remaining components are assigned G.

O1=U

O2=U O1=U

{{O2 = U}, {O1 = U}, {A1 = U}}

{{O1 = U}, {A2 = U}, {A1 = U}}

Constituent Kernels

For Conflict 2:

For Conflict 1:

{}

Fig. 16. Conflict-directed A* tree expansion corresponding to Candidate 3. The
arrow indicates the node that is the kernel of Candidate 3. A closed/open circle in-
dicates an expanded/unexpanded node. Note that when node O2 = U is expanded,
its best child and its next best sibling are created.

Figure 16 shows the tree when Candidate 3 is generated. At this point Conflict
1 and 2 have been discovered. The node {O2 = U} does not resolve Conflict 2,
hence, it must be expanded. We do this by creating the best child of {O2 = U},
which is {O2 = U, O1 = U}. The probability for the best state of this kernel
is .01× .01× .99× .995× .995 = .00098.

In addition, now that Conflict 2 has restricted the set of candidates considered
under {O2 = U}, we no longer are guaranteed that the node {O2 = U}
contains a state that is as good as its siblings. Hence we also expand its next
best sibling, which is {O1 = U}. The probability of the best candidate under
{O1 = U} is .01× .99× .99× .995× .995 = .0097. This has a higher probability
than {O2 = U, O1 = U}, which has probability .00098. This makes intuitive
sense, since single faults are more likely than double faults. Hence we choose
{O1 = U} for further exploration. Next, note that node {O1 = U} resolves
both Conflict 1 and 2, hence it is a kernel. We generate the best candidate of
this kernel by assigning G to the remaining variables, resulting in the single
fault candidate,

Candidate 3: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}.

This candidate proves consistent, completing the search for the most likely
diagnosis.

Note that the distinctive pattern of this search strategy is to expand a node at
every step by creating its best child and its next best sibling. This strategy has
the effect of growing the search queue to the modest size of at most 2N after
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visiting N nodes. This strategy is embodied in the function Next-Best-Kernel,
developed in Section 5.

Often we will want to continue the search, for example, to find the set of
most likely diagnoses that cover most of the probability density space. To
accomplish this we need the capability to systematically explore the states
within the kernels in best first order. This is more complicated than extracting
the best state of the best kernel, as demonstrated above. We develop this
complete strategy in Section 6. The remainder of this paper presents Optimal
CSPs and conflict-directed A* more formally, and two supporting methods,
constraint-based A* and next-best-kernels.

In addition to its role within conflict-directed A*, constraint-based A* offers
a point of comparison, by providing a method for solving optimal CSPs that
exploits preferential independence, but not conflicts. Next-Best-Kernel also
offers a method for generating parsimonious descriptions of the “best” solu-
tions, while offering an any-time approach to avoiding an exponential growth
in the descriptions.

3 Optimal Constraint Satisfaction Problems

This paper is about the solution of optimal CSPs, that is, combinatorial op-
timization problems with constraints expressed as CSPs. An example is the
model-based diagnosis problem framed in the previous section. We focus on
the pervasive family of optimal CSPs in which the utilities of the decision
variables are preferentially independent, as defined in this section. In addition,
in Section 2.2 we described practical applications of optimal CSPs in which
the constraints are encoded as propositional satisfiability and unsatisfiability
constraints. We refer to these as OpSat problems. The concepts of optimal
CSP, preferential independence and OpSat were introduced in Section 2. In
this section we provide definitions, illustrated with Boolean polycell.

3.1 Defining Optimal CSPs

We begin with the familiar definition of a CSP,

Definition 1 We denote a constraint satisfaction problem as a triple P =
〈x,Dx, Cx〉. x is a set of variables, where each variable xi ∈ x ranges over
a corresponding domain Dxi

in Dx. A variable assignment is an expression
xi = vij , where xi ∈ x is a variable and vij ∈ Dxi

. A state of P is an assignment
to vector x, represented as a set containing exactly one assignment for every
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xi ∈ x. The set of all assignments to x is denoted S, and is called the state
space of P. A constraint Cx denotes a subset of state space S. A state α ∈ S

satisfies Cx when α ∈ Cx, in this case α is called a solution to P. If α satisfies
Cx, then Cx(α) is said to be consistent; otherwise, Cx(α) is inconsistent.

For example, we can use a CSP to frame the problem of identifying a set of
component modes and variable values for Boolean polycell (Figure 6) that are
consistent with a model of Boolean polycell and observations OBS. Viewed as
a CSP, Boolean polycell consists of state variables

x = {A,B,C,D,E, F,G,X, Y, Z,O1, O2, O3, A1, A2}.

A - Z are Boolean variables, each with domain {1, 0}. A - E are inputs, F and
G are outputs, and X - Z are hidden variables. O1 - A2 are mode variables,
each with domain {U, G}.

The constraint Cx ≡ Φ∩OBS denotes the set of all variable assignments that
are consistent with a model for Boolean polycell, Φ, and the set of observations,
OBS. Following the description of Section 2.3, Φ specifies a behavior for each
component when it is in the good mode (G), and imposes no constraint when
a component is in the unknown mode (U). Φ is defined by the conjunction of
five constraints:

O1 = G ⇒ X = A OR B

A1 = G ⇒ F = X AND Y

O2 = G ⇒ Y = B OR D

A2 = G ⇒ G = Y AND Z

O3 = G ⇒ Z = C OR E

where “AND” and “OR” are the standard Boolean operators on 1 and 0.
Finally, observations OBS is defined by the conjunction of seven constraints:
A = 3, E = 3, B = 2, F = 10, C = 2, G = 12 and D = 3.

Next, an optimal CSP extends a CSP to include a set of decision variables
and a utility function. More specifically,

Definition 2 An optimal constraint satisfaction problem (P ) is a triple P =
〈y, g,CSP〉. y is a set of decision variables, the utility function g maps assign-
ments of y to the Reals �, and CSP = 〈x,Dx, Cx〉 is a constraint satisfaction
problem, where y is a subset of x.

An assignment to y is called a decision state of P , and the domain of all
possible assignments to y, denoted Dy, is called the decision space of P . We
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use z to denote the state variables of x not contained in y. The domain of z
is denoted Dz.

We define constraint Cy as the projection of Cx on to decision variables y,
such that Cy(y) is consistent if and only if ∃z ∈ Dz.Cx(y, z) is consistent.

A solution to P is the decision state 3

δ = argmaxv∈Dyg(v) such that Cy(v) is consistent.

For example, the diagnosis of Boolean polycell is encoded as an optimal CSP,
where the decision variables of the OCSP is the set of component mode vari-
ables,

y = 〈O1, O2, O3, A1, A2〉.

The utility function g on the decision variables is the probability of the mode
assignment,

g =
∏
i

Pi(yi).

The CSP is the set of state variables x and constraints Cx ≡ Φ∩OBS, specified
earlier. Cy(y) ≡ ∃z ∈ Dz.Φ(y; z) ∩OBS(y; z) is consistent.

The space of candidates for Boolean polycell is equivalent to the decision space
of this OCSP. The three leading solutions to the OCSP are the three diagnoses
given in the preceding section,

Diagnosis 1: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G},

Diagnosis 2: {O1 = G,O2 = G,O3 = G,A1 = U, A2 = G}, and

Diagnosis 3: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = U}.

The first diagnosis, {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}, for
example, satisfies Cy with assignments X = 0, Y = 1 and Z = 1, as shown in
Figure 7.

3 In this paper we use the convention that g is a utility to be maximized. It is
straightforward to reformulate the approach such that g is a cost to be minimized.
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3.2 Decision Problems and Preferential Independence

This section introduces a key structural property shared by most OCSPs,
called mutual preferential independence. We view an optimal CSP as a multi-
attribute decision problem. The attributes are the decision variables of the
CSP, each decision variable yi has an associated attribute utility gi(yi), and
the function g describes the multi-attribute utility. We further restrict our-
selves to OCSPs in which the attributes are (mutually) preferentially inde-
pendent. Informally, this means that an assignment to y maximizes utility,
g, by maximizing the attribute utility, gi, of each yi separately. Preferential
independence is key to how conflict-directed A* searches through candidates
in best first order. The remainder of this section makes these concepts precise.

To facilitate the solution of multi-attribute decision problems, utility theory
exploits common structural properties to determine the preference of one set
of assignments over another. Preference corresponds to better utility:

Definition 3 Let 〈y, g,CSP〉 be an optimal CSP, and δ1 and δ2 be two sets
of assignments to y. Then δ1 is preferred over δ2 if g(δ1) > g(δ2).

Mutual preferential independence is one of the most commonly occurring
structural properties of practical, multi-attribute decision problems:

Definition 4 Given an optimal CSP, 〈y, g,CSP〉, then variables y are mutu-
ally preferentially independent (MPI) if for any subset of the decision variables
w ⊂ y, preferences between assignments to w are independent of the partic-
ular assignments to the remaining decision variables, y −w.

Conflict-directed A* is restricted to the family of optimal CSPs that are MPI.

Economist Debreu [36] showed that any decision problem that is MPI may be
captured as maximizing a utility function of the form

g(y) =
∑

i

gi(yi).

Consequently, the utility of an assignment to decision variables y is maxi-
mized by maximizing the utility of the assignment to each decision variable
yi, separately; that is,

max g(y) = max(
∑

i

gi(yi)) = (
∑

i

max(gi(yi))).

In Sections 4.4 and 5.3 we describe how algorithms constraint-based A* and
conflict-directed A* exploit this property to efficiently enumerate assignments
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in best first order.

For an optimal CSP that is MPI we encode the utility g using a single attribute
utility, gi, for each decision variable yi, and a binary function G, used to
compose the single attribute utilities into a total utility. We assume that G
is associative, commutative, and has identity IG. G applied to the utility of n
attributes is defined recursively in the standard manner,

G(u1, u2, . . . un) =G(un, G(u1, u2, . . . un−1))
G(u1) =G(u1, IG).

Total utility is then

g(y) = G(g1(y1), g2(y2), . . . gn(yn)).

G being MPI corresponds to the property:

If u > v then G(u, w) > G(v,w), for all w.

To summarize,

Definition 5 The utility function, g, of an Optimal CSP that is MPI is spec-
ified as a triple g = 〈g, G, IG〉, where each attribute utility gi ∈ g maps Dyi

to
�, G is a binary function from � × � to � that is associative, commutative,
and mutually preferential independent, and IG is the identity of G.

For Boolean polycell, the utility function, g =
∏

i Pi(yi), is encoded as g =
〈P,×, 1〉. Note that × satisfies the condition of MPI for non-zero probabilities,
since if u > v, then u× w > v × w.

3.3 OpSat

The applications of conflict-directed A* discussed in Section 2.2 involve con-
straint systems described in propositional state logic. We refer to these as
OpSat problems. For propositional logic, recall that a proposition is a boolean
variable that may be assigned true or false. A literal is a proposition or its
negation, the former being a positive literal and the later being a negative
literal. A positive literal is true if and only if its proposition is true, and a
negative literal is true if and only if its proposition is false. A clause is a dis-
junction of literals and is satisfied if at least one of its literals is true. A theory
is a set of clauses, and is satisfied exactly when all of the clauses in the set are
satisfied.
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Propositional state logic is a propositional logic in which every proposition is
a variable/value assignment. In addition to a set of clauses, a description in
propositional state logic specifies a set of variables x ranging over domain Dx,
which defines the allowed variable/value assignments. An additional constraint
enforced by the logic is that each variable must take on exactly one value in
its domain.

In Section 2.2 we saw that several OpSat problems require the decision vari-
ables to satisfy conditions of entailment, as well as consistency. We re-encode
each entailment condition (Θ |= φ) as an unsatisfiability condition (Θ ∧ ¬φ
is unsatisfiable). The general form of an OpSat problem is then a set of sat-
isfiability conditions and unsatisfiability conditions that any solution must
achieve.

Definition 6 An OpSat problem (P ) is a triple P = 〈y, g, SAT〉. y is a set of
decision variables, the utility function g maps assignments of y to the Reals �,
and SAT = 〈x,Dx, CS , CU〉 specifies the (un)satisfiability constraint, where y
is a subset of x. CS and CU are both conjunctions of clauses in propositional
state logic with variables x, ranging over domain Dx.

A solution to P is the decision state

δ = argmaxv∈Dyg(v)
such that CS(v) is satisfiable and

CU(v) is unsatisfiable.

For example, for Boolean polycell the assignment to the mode variables must
be consistent with the constraints describing the model and observations.
These constraints are easily expressed in propositional state logic. Each AND
gate (ANDn) for Boolean polycell is described by the conjunction of three
clauses

ANDn = U ∨ In1 = 0 ∨ In3 = 0 ∨ Out = 1

ANDn = U ∨Out = 0 ∨ In1 = 1

ANDn = U ∨ Out = 0 ∨ In2 = 1,

and each OR gate is described by the conjunction of clauses

ORn = U ∨ In1 = 1 ∨ In3 = 1 ∨Out = 0

ORn = U ∨ Out = 1 ∨ In1 = 0

ORn = U ∨ Out = 1 ∨ In2 = 0.
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The primary subtlety around extending conflict-directed A* to OpSat prob-
lems is the definition and efficient extraction of conflicts for the unsat condi-
tion. Intuitively, a conflict for the unsat condition, CU , is a minimal partial
assignment to y that guarantees that CU is satisfiable, for all possible assign-
ments to the remaining variables in y. In the remainder of this paper we focus
on the general problem of solving Optimal CSPs, rather than those aspects
that are peculiar to implementing OpSat in particular.

4 Constraint-based A*

In this section we explore the use of mutual preferential independence (MPI)
to solve optimal CSPs. Constraint-based A* uses MPI to develop a heuristic
function for A* search that guides its exploration through the space of con-
sistent partial assignments. MPI also allows conflict-directed A* to expand a
smaller portion of the search tree than traditionally performed by A* search.
In subsequent sections we explore the use of conflicts.

4.1 Review of A* Search

We start by reviewing A* for state space search problems.

Definition 7 A state space search problem is defined by a quintuple

〈Σ,Θ,Ops,Goal-Test, g〉. Σ is the state space of the search problem. Θ ∈ Σ is
the problem initial state. Ops is a set of search operators, op : Σ→ Σ, each of
which maps a state in Σ to a next state, in Σ. Goal-Test: Σ → {True,False}
specifies for each state whether or not it satisfies the problem goals. The utility
function g maps a sequence of operators to �, and represents the utility of
applying the operator sequence, starting in initial state Θ.

A candidate solution to a search problem is a sequence of operators that maps
initial state Θ to a state in Σ. A feasible solution is a candidate that maps
the initial state to a state that satisfies Goal-Test. An optimal solution is a
feasible solution that maximizes utility g.

A version of the A* search algorithm is shown in Figure 17. A* search in-
crementally expands a search tree, rooted in the problem’s initial state. Each
tree node is labeled with a search state and each branch is labeled with an
operator. The children of each node are states that are generated by applying
each search problem operator to the node’s search state. This is performed by
the function Expand(search-state, problem).
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function Initialize-A*-Search(problem)
returns Problem with its search-tree initialized.
Nodes[problem] ←

Make-Queue(Make-Search-Tree-Node(Θ[problem],NoParent))
Expanded[problem] ← {}
return problem

function A*-Search(problem, h)
returns the next best solution or failure.
f(x) ← g[problem](x) + h(x)
loop do
if Nodes[problem] is empty then return failure
node ← Remove-Best(Nodes[problem], f)
remove any n from Nodes[problem] such that State(n) = State(node)
Expanded[problem] ← Expanded[problem] ∪ {State(node)}
new-nodes ← Expand(node, problem)
for each new-node in new-nodes
unless State(new-node) is in Expanded[problem]
then Nodes[problem] ← Enqueue(Nodes[problem], new-node, f)

if Goal-Test[problem] applied to State(node) succeeds
then return node

end

Fig. 17. A* Search. Problem is a state space search problem with utility function
g, initial state Θ, node expansion function Expand, and a Goal-Test for identifying
states that are solutions. h is an admissible heuristic for problem. Variations of this
algorithm are used by Constraint-based-A* (Figure 19), Next-Best-Kernel (Figure
31) and Conflict-Directed-A* (Figure ??).

A path through the tree from the root to a leaf node constitutes a candidate
solution, consisting of the operators on the branches along the path. The fea-
sible solutions are the leaf nodes whose state satisfy the goal test. An optimal
solution is one of the leaves that maximizes utility g. 4

A* search expands search tree nodes in order of estimated utility f ,

f(n) = g(n) + h(n)

where n is a node, g(n) is the utility of the path from the root to that node, and
h(n) is a heuristic that estimates the maximum utility gained by reaching a
state that satisfies goal test. An admissible heuristic h(n) never underestimates

4 A* search is typically framed as finding a minimal cost solution; however, without
loss of generality, we frame it as maximizing utility to maintain consistency with
the development of optimal CSPs.
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the utility of reaching the goal. The set of k leading solutions are found by
first calling Initialize-A*-Search, followed by k successive calls to A*-Search.

4.2 The Dynamic Programming Principle

Dynamic programming is an important element of standard A* search. A*
may be viewed as a search for the best utility path from Θ to one of the
goal states. Multiple paths may exist to any intermediate state within the
state space. Nodes on the A* search queue represent different partial paths
from Θ to intermediate states, and are waiting to be extended in best first
order. Exploring all paths that go through each intermediate state to ensure
optimality can be quite costly.

The dynamic programming principle tells us that the best utility path that
goes from the root to a goal state through a node s, will always contain, as
a prefix, the shortest path p from the root to s. The key consequence is that,
without sacrificing optimality, A* search may remove from the search queue
the remaining, sub-optimal paths to s, without further exploration.

The dynamic programming principle also tells us that, for each intermediate
state s, A* will always remove from the queue the node representing the
best utility path p to s first. That is, it occurs before removing those nodes
representing suboptimal paths to s. To remove nodes representing suboptimal
paths, whenever a node n is taken off the queue, A* removes any node on the
queue that has the same search state as n. This test must be performed when
a node is removed from the queue, rather than when it is added. This ensures
that the best cost path to the intermediate state has been found. In addition,
a list of already expanded nodes is maintained (called Expanded[problem]),
and used to check if newly created nodes refer to an already expanded state.

4.3 Optimality of A*

Given that h is admissible, A* has three desirable features: It is correct, that
is, the value it returns is guaranteed to be the global optimum. This is in
contrast to local search methods that can become stuck in a local optimum.
A* is complete for locally finite graphs, that is, if a feasible solution exists,
then A* is guaranteed to return an optimal feasible solution. Finally, A* is
efficient, that is, it explores no node with heuristic utility h less than the
optimum.

A* is characterized as optimally efficient[37]. For example, Russell and Norvig
[38] observe that no other optimal algorithm that expands search paths from
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the root is guaranteed to expand fewer nodes than A*. Intuitively, any algo-
rithm that does not expand all nodes in the contours between the root and
the goal contour runs the risk of missing the optimal solution.

Our leverage point for improving upon A* is the fact that an optimal CSP
imposes additional structure beyond a generic state space search problem. In
particular, for optimal CSPs, states are factored into variable assignments,
and the constraint Cx is factored into a conjunction of constraints. Like A*,
conflict-directed A* must preserve efficiency, that is, it should not explicitly
consider any state whose g(n) is worse than the optimal solution. For correct-
ness it must also rule out any state whose g(n) is better than the optimum.
However, while A* rules out these states explicitly, conflict-directed A* rules
out many of these states implicitly.

4.4 The Constraint-based A* Algorithm

In this section we develop constraint-based A*, a variant of A* that solves
optimal CSPs by exploiting MPI, but not conflicts. Examples of partially
expanded search trees for constraint-based A* are shown in Figures 25 - 28.
For a CSP an unassigned variable is selected for each tree node that is not
a leaf, and the branches of the node are labeled with alternative assignments
to that variable. The set of assignments along a path from the tree root to
a node is a partial assignment for the CSP and represents the node’s search
state. The order in which these assignments is made is irrelevant. The search
state of a leaf node is one of the states of the CSP. The search states of the set
of all leaf nodes is equivalent to the state space of the CSP. We refer to this
tree as an assignment tree. Functions that support this definition of search
tree for CSPs are shown in Figure 18.

Given an OCSP, constraint-based A* (Figure 19) guides the selection of vari-
able assignments towards the optimal decision state that satisfies Cy, (accord-
ing to function Goal-Test-State). We extend A* search to constraint systems
by performing A* search using specialized versions of A* functions Goal-Test,
g and h, and Expand that operate on assignment trees.

Recall that dynamic programming is an important element of standard A*
search, since in general multiple paths may exist to any intermediate state
within the state space. The dynamic programming principle avoids further ex-
pansion of those paths to an intermediate state that are sub-optimal. Constraint-
based A* has the property, shared with most CSP algorithms, that it does not
generate multiple paths to the same partial assignment. As a consequence, the
dynamic programming principle is not needed for constraint-based A*. Note,
however, that we will need to reintroduce a variant of the principle when we
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function Make-Tree-Node(assignment, parent)
return 〈assignment, parent〉

function Root?[node]
returns True if node is the root of the search tree.
if Assignment[node] = {}
then return True
else return False

function State[node]
returns the (partial) assignments along the path from root to node.
if Root?[node]
then return {}
else return Assignment[node] ∪ State[Parent[node]]

end

function Theta[Problem]
returns the initial state of the search, which is the empty assignment.
return {}

Fig. 18. Functions for constructing and examining a search tree for a CSP, called
an assignment tree. These functions are used by Constraint-Based-A* (Figure
19), Next-Best-Kernel (Figure 31) and Next-Best-State-Resolving-Conflicts of Con-
flict-Directed-A* (Figure 35).

incorporate conflicts into the search.

The utility f(n) of node n is an upper bound on the utility of all states of the
leaf nodes appearing below node n. More specifically, g(n) is the utility of the
assignments along the path from the root to n, while h(n) is an upper bound
estimate on the utility of assigning the remaining variables. Definitions for g
and h are shown in Figure 20.

MPI is the key to defining a heuristic evaluation function that may be com-
puted efficiently. Heuristic function h is defined by exploiting the property of
mutual preferential independence (MPI). Recall that, since utility function g
is MPI, it follows that, if u ≥ v, then G(u, w) ≥ G(v, w). Hence, the utility of
a decision state is maximized by maximizing the utility of the assignment to
each variable yi ∈ y separately. Let z denote the set of unassigned variables of
the OCSP at a particular search node. Then the maximum utility completion
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function Constraint-based-A*(OCSP)
returns the leading minimal cost solutions of OCSP.
f(x) ← G[problem](g[problem](x), h[problem](x))
Nodes[OCSP] ←

Make-Queue(Make-Search-Tree-Node(Θ[OCSP],NoParent))
solutions ← {}
loop do
if Terminate?(OCSP, solutions) or

Nodes[OCSP] is empty
then return solutions
else node ← Remove-Best(Nodes[OCSP], f)

Nodes[OCSP] ←
Enqueue(Nodes[OCSP], Expand-Variable(node, OCSP), f)

if Goal-Test-State[OCSP] applied to State(node) succeeds
then add State[node] to solutions

end

function Goal-Test-State(node, problem)
returns True iff node is a complete, consistent, decision state.
if State[node] assigns values to all decision variables in problem
then return Consistent?(State[node], CSP[problem])
else return False

Fig. 19. Constraint-based A*.

of z is 5

h(z) = G({gmax
zi
|zi ∈ z, gmax

zi
= max

vij∈Dzi

gzi
(vij)}).

For example, Boolean polycell includes a tree node, n1, corresponding to kernel
{A2 = U, O2 = U}. The utility of the assignments in this kernel is

g(n1) = PA2(U)× PO2(U) = .005× .01 = .00005.

Utility is maximized by maximizing probability, and the probability of each
component is maximized if it is in the “Good” mode, hence,

h(n1) = PA1(G)× PO1(G)× PO3(G) = .995× .99× .99 = .975.

Note that the definition of h(z) is an optimistic estimate on the utility of all
extensions, h is admissible, hence, constraint-based A* is guaranteed to come
5 Let S be a set of utilities {si}. We use G(S) to denote G(s1, s2, . . . sn).
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up with an optimal solution. h is only an estimate since, although a state must
exist with utility h(n), that state may be inconsistent with Cy.

function g[problem](node)
returns the utility of node’s state.
if Root?[node]
then return IG[problem]
else {yi = vj} = Assignment[node]

return G[problem](gi(vj), g[problem](Parent[node]))

function h[problem](node)
returns the best utility to complete node’s state.
unassigned ← all variables not assigned in State[node]
return Gmax[problem](unassigned)

function Gmax[problem](variables)
returns the maximum utility of all assignments to variables.
if variables = {}
then return IG[problem]
else yi = one of variables

remaining = variables - {yi}
return G[problem](gmax[problem](yi), Gmax[problem](remaining))

function gmax[problem](yi)
returns the maximum attribute utility for yi.
return maxvij∈Di[problem] gi[problem](vij)

Fig. 20. Utility g and heuristic utility h for an optimal CSP. These functions
are used by Constraint-Based-A* (Figure 19), Next-Best-Kernel (Figure 31) and
Next-Best-State-Resolving-Conflicts of Conflict-Directed-A* (Figure 35).

Finally, consider the expansion function, Expand-Variable. Given a node n, a
straight forward implementation of function Expand-Variable would check to
see if the state of n is consistent. If it is, it would then select any unassigned
decision variable, and if such a variable exists, it would then generate a child
of n for each possible value in that variable’s domain. As with any CSP the
solution is insensitive to the order in which the variables are assigned, hence
any one variable may be expanded at each step.

A key consequence of mutual preferential independence is that it enables
Constraint-Based-A* to reduce the number of branches of the tree expanded
during search.

Proposition 1 Let c1 and c2 be sibling nodes, where c1 is labeled with as-
signment yi = vij , c2 is labeled with yi = vik, and gi(vij) ≥ gi(vik). Then
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there exists a leaf node l1 under c1 such that for all leaf nodes l2 under c2,
g(State[l1]) ≥ g(State[l2]).

A2=G

O2=G

A1=G

O3=G

O1=U

O2=U

P = .00098

A2=G

A1=G

O3=G

P = .0097 >

c1 c2

n

l1i l2j

Fig. 21. An example demonstrating that, given two children, c1 and c2, the child
with the better utility, c1, always contains a state l1i with a better utility than the
best state, l2j , of c2.

For example, suppose we have a node n with state {O1 = U} (Figure 21).
Furthermore, suppose we expand n using O2, hence, n has a child c1 for {O2 =
G} and a child c2 for {O2 = U}. gi(O2 = G) = .99, while gi(O2 = U) = .01,
hence, c1 has a leaf that is ≥ all the leaves of c2. In particular, by MPI the

best leaf, l1i, of c1 is {O1 = U, O2=G, O3 = G,A1 = G,A2 = G}, with

probability .01×.99×.99×.995×.995 = .0097. This is better than the best leaf,

l2j , of c2, which by MPI is {O1 = U, O2 = U, O3 = G,A1 = G,A2 = G},
with probability .01× .01× .99× .995× .995 = .00098. We note that these two
best children only differ by the assignments to O2, indicated by boxes. This
is a consequence of MPI.

. . .

n

yi =v1 yi =v2 yi =v1yi =vn

n

c1 c2 cn c1

Fig. 22. Due to MPI, only the child of a node with the best cost assignment needs
to be expanded (right), rather than all children (left).
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Now consider a node n that is to be expanded using an unassigned variable yi.
We rank the values of Di in decreasing order of utility gi. We use v1 to denote
the value that maximizes gi, we use v2 to denote the second best value, and so
forth. Likewise, we use c1 to denote the child with the best assignment, yi = v1,
we use c2 to denote the child with the second best assignment, yi = v2, and so
forth. The key consequence of Proposition 1 is that function Expand-Variable
only needs to create a node for the child, c1, with the best assignment, yi = v1

(Figure 22). This follows because some leaf, l1n, of c1 must exist whose utility
is greater than or equal to all leaves of the siblings of c1. Hence the best utility
unexplored state contained by node n must be contained within c1, not its
siblings. This best child is created by function Expand-Variable-Best-Child in
Figure 23. 6

function Expand-Variable-Best-Child(node, problem)
returns for node, a child with a best cost assignment.
if all variables are assigned in State[node]
then return {}
else return Expand-Domain(node, problem)

function Expand-Domain(node, problem)
returns the child with the best cost assignment of an unassigned variable.
yi ← an unassigned variable in State[node] with the smallest domain.
C ← {yi = vij |vij ∈ Di[problem]}
Child-Assignments[node] ← Sort C such that for i from 1 to |C| − 1,

Better-Assignment?(C[k], C[k + 1], problem) is True
yi = vij ← C[1], which is the best assignment in the domain of yi

return {Make-Node({yi = vij}, node)}

function Better-Assignment?(yi = vij, yi = vik, problem)
returns True if the upper bound utility of a child node that adds

assignment yi = vij is at least as good as a sibling adding yi = vik.
return gyi

[problem](vij) ≥ gyi
[problem](vik)

Fig. 23. Expanding the best child for Constraint-Based-A*. Expand-Domain is also
used by Next-Best-State-Resolving-Conflicts of Conflict-directed-A* (Figure 35)

Node c1 is guaranteed to contain the best state only until one or more of the
states of c1 have been eliminated, for example, by eliminating one of c1’s leaf
nodes. At this point we may have eliminated l1n, in which case the best leaf
node of c2 may have a greater utility than the remaining unexplored leaves of
c1. Hence once a leaf of a node cn is eliminated, we must create a node for its

6 For simplicity of presentation, in the figure, Expand-Domain orders the con-
stituent kernels by utility when the node is created. For efficiency, the implementa-
tion performs this ordering when the constituents are created.
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function Expand-Variable(node, problem)
returns the best nodes expanded from node.
if Consistent?(State[node], CSP[problem])
then nodes ← Expand-Variable-Best-Child(node, problem)
if Leaf-Node?(node, problem)
then nodes ← nodes ∪

Expand-Next-Best-Sibling-of-Ancestors(node, problem)
return nodes

else return {}

function Expand-Next-Best-Sibling-of-Ancestors(node, problem)
returns siblings of node and its ancestors with the next best assignment.
if Root?[node]
then return {}
else return Expand-Next-Best-Sibling(node, problem) ∪

Expand-Next-Best-Sibling-of-Ancestors(Parent[node], problem)

function Expand-Next-Best-Sibling(node, problem)
returns node’s sibling with the next best assignment

in Child-Assignments[Parent[node]].
if Root?[node]
then return {}
else {yi = vij} ← Assignment[node]

{yk = vkl} ← next assignment in Child-Assignments[Parent[node]]
after {yi = vij}

if no next assignment {yk = vkl}
or Parent[node] already has a child with {yk = vkl}

then return {}
else return {Make-Node({yk = vkl}, Parent[node])}

Fig. 24. Expanding the best sibling for constraint-based A*. Ex-
pand-Next-Best-Sibling is also used for expansion by Next-Best-Kernel (Figure 31)
and Next-Best-State-Resolving-Conflicts (Figure 35).

next best sibling cn+1. This sibling is created using the function Expand-Next-
Best-Sibling, shown in Figure 24. When a leaf is expanded, a next best sibling
is created for every ancestor of the leaf by function Expand-Next-Best-Sibling-
of-Ancestors. This approach to expansion is summarized in Figure 24. In this
approach also note that a node is only expanded when its partial assignment
proves consistent.

A* traditionally expands all children of a node, producing at most b nodes,
where b is the maximimum variable domain size, b = maxi |Di|. Each call
to expand increases the size of the queue by b − 1 nodes, producing a worst
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case growth of (b − 1) × n after n iterations. In contrast, our strategy grows
the queue by one node at each step (two new nodes are added, and one is
removed), producing a worst case growth of only n nodes after n iterations.
This is an important reduction in queue growth. Our strategy preserves the key
properties of optimality and completeness, that is, it expands leaves in best
first order and it eventually reaches all tree leaves, given that the variable
domains are finite.

4.5 Constraint-based A* for Boolean Polycell

Consider the results of node expansion when Constraint-based-A* is applied to
Boolean polycell. On the first iteration of Constraint-based-A*, search begins
with only the root node on the search queue. This is node n1 of Figure 25. The
root is taken off the queue and its best child (n2) is expanded, by selecting
O3 as an unassigned variable and assigning it its best assignment, G. Next,
n2 is taken off the queue, and its best child, n3 is generated. A similar process
generates n4, n5 and finally n6, which is the best state,

Candidate 1: {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}.

O3=G

A1=G

O2=G

A2=G

O1=G

{}

n1

n2

n3

n4

n5

n6

Fig. 25. Search tree created by Constraint-based-A* to generate the best utility
state. The best state, Candidate 1, is {O1 = G,O2 = G, O3 = G,A1 = G,A2 = G},
and is indicated by an arrow.

Node n6 is a leaf node, hence when it is removed from the search queue,
Expand-Variable generates the next best sibling of that node and all its an-
cestors, producing n7 – n11 in Figure 26.
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O3=G

A1=G

O2=G

A2=G

O1=G

{}

n1

n2

n3

n4

n5

n6

n10

n11

n9

n8

n7

O3=U

A1=U

O2=U

A2=U

O1=U

Fig. 26. When leaf node n6 is expanded, the best sibling of n6 and all its ancestors
are created.

Constraint-Based-A* uses Goal-Test-State to test Candidate 1 for consistency
and proves it inconsistent. Hence the search continues with the current search
agenda to find the next best utility state. Nodes n9−n11, which are at the front
of the search queue, all have the same utility. We will assume that n11 is taken
off the search queue for expansion. Expand-Variable repeatedly generates the
best descendants of n11, which are n12 − n15, shown in Figure 27. n15 is a
complete assignment, and is returned as a candidate,

{O1 = G,O2 = G,O3 = U, A1 = G,A2 = G}.

When leaf node n15 is removed from the search queue, Expand-Variable gen-
erates the next best sibling of n15 and its ancestors, which are nodes n16−n19

in Figure 28. Expand-Variable does not generate a next best sibling for n1,
because the domain of O3 has been exhausted.

Constraint-Based-A* also determines that n15 is inconsistent, and the search
is continued for a third round, with n10 at the top of the queue. As before, its
best descendants are expanded depth first, by selecting the best value of its
unassigned variables, generating nodes n20 − n22 (Figure 28), and candidate

{O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}.

This candidate is also inconsistent, hence, the process repeats until the desired
set of best consistent candidates has been found.

This completes our development of basic constraint-based A*. To summarize,
constraint-based A* introduces three key concepts. First, an OCSP may be
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O3=G

A1=G

O2=G

A2=G

O1=G

{}

O3=U

A1=G

O2=G

A2=G

O1=G

n1

n2

n3

n4

n5

n6

n10

n11

n9

n8

n7

A1=U

O2=U

A2=U

O1=U

n12

n13

n14

n15

Fig. 27. The best descendants of n11 are expanded to produce the second best utility
state, {O1 = G,O2 = G,O3 = U, A1 = G,A2 = G}. This state is indicated by an
arrow.

O3=G

A1=G

O2=G

A2=G

O1=G

{}

O3=U

A1=G

O2=G

A2=G

O1=G

A1=G

O2=U

A2=G

O1=G

n1

n2

n3

n4

n5

n6

n10

n11

n9

n8

n7

A1=U

O2=U

A2=U

O1=U

n12

n13

n14

n15

n20

n21

n22

O1=U

A2=U

A1=U

n18

n17

n16

n19

Fig. 28. After eliminating n15, the next best siblings of its ancestors are expanded.
Next the best descendants of n10 are expanded to produce the third best utility
state, {O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}. This state is indicated by an
arrow.

solved by performing an A* search on an assignment tree, representing the
space of all partial assignments. Second, MPI enables us to efficiently estimate
the cost-to-go of a partial assignment. This function, h, simply selects the
assignment with the best attribute utility for each unassigned variable. Finally,
queue growth is reduced by only expanding, for each node, waiting until one
of the child’s states is eliminated, before expanding its next best sibling.

the best child that has no eliminated states.

42



5 Generating the Best Kernel

In Section 2.5 we saw how conflict-directed A* jumps over the leading set of
conflicting states by generating the kernel containing the best state. In this
section we develop a function, called Next-Best-Kernel, that generates this
best kernel. In Section 6 we use this result to develop conflict-directed A*.

More generally, repeated invocations of Next-Best-Kernel provides an effective
algorithm for generating a compact description of most or all “good” solutions.
Early diagnostic approaches [1,15,2,17] generated a complete description of
the diagnostic space by generating all kernels from all conflicts. In the worst
case, however, the complete set of kernels may be exponential in the number of
components. Next-Best-Kernel allows us to address this problem by generating
the kernels in best first order, stopping, for example, when the generated
kernels cover most of the probability density space of valid diagnoses. This
approach is particularly effective for cases where a small collection of kernels
covers the majority of the diagnoses, and where the remaining, exponential
number of kernels collectively cover a small portion of the probability density
space. The approach offers an any-time, any-space algorithm, which increases
its coverage of the solution space as additional time and memory permits.

5.1 Definitions

In Section 2 we introduced several terms, such as conflict and kernel, in order
to describe conflict-directed A*. This section defines these terms formally,
generalizing from concepts introduced in model-based diagnosis, particularly
[1,2,15].

Recall that a partial assignment to the variables of a CSP denotes a subset of
the state space of the CSP. A conflict is a partial assignment that is inconsis-
tent. Any state that is a superset of this conflict is also inconsistent. Hence we
can think of a conflict as denoting an inconsistent subset of the state space.
Any state contained by a conflict is said to manifest that conflict. Any state
not contained by a conflict is said to resolve that conflict.

Definition 8 Let y be a set of variables with domain Dy and state space
Sy. A partial assignment, α, to y is a set of assignments to a subset of y
that contains at most one assignment for every yi ∈ y. The set of all partial
assignments is denoted Py. A partial assignment β ∈ Py extends α if α ⊂ β.
The states of a partial assignment α, denoted States(α), is the set of all states,
s ∈ Sy, that extend α.
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For example,

{O1 = U, O2 = G,O3 = G,A1 = G}

is a partial assignment for Boolean polycell that leaves A2 unassigned. It
denotes a subspace consisting of two states,

{O1 = U, O2 = G,O3 = G,A1 = G,A2 = G} and

{O1 = U, O2 = G,O3 = G,A1 = G,A2 = U}.

Definition 9 Let y be a set of variables with state space Sy, and let Cy be a
constraint on y. A conflict α of constraint Cy is a partial assignment to y such
that every state that extends α is inconsistent with Cy. A minimal conflict
of Cy is a conflict of Cy, no proper subset of which is a conflict. Let α be a
conflict of Cy, and s be a state s ∈ Sy, then s manifests α if α ⊂ s; otherwise,
s resolves α. If s manifests α, then α is called a state conflict of s.

For Boolean polycell, the state

s1 : {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}

contains two minimal state conflicts,

Conflict 1: {O1 = G,O2 = G,A1 = G} and

Conflict 2: {O1 = G,A1 = G,A2 = G},

which are the two conflicts identified in Section 2.4. Hence, s1 manifests Con-
flicts 1 and 2. State

s2 : {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}

resolves Conflicts 1 and 2, since neither conflict is a subset of s2.

Recall that the task of conflict-directed A* is to jump over subspaces known
to be inconsistent, without further considering any of the states within those
subspaces explicitly. The states jumped over are the states of the known con-
flicts. To accomplish this we invert the known conflicts, by generating descrip-
tions of all subsets of the state space that resolve these conflicts. Subspaces of
states that resolve a set of conflicts are described by partial assignments called
kernels. Every state contained by a kernel resolves every known conflict. Con-
versely, each state that resolves all conflicts is the state of at least one kernel.
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To be complete, conflict-directed A* must be able to generate all kernels for
a given set of known conflicts.

Definition 10 Let y be a set of variables with partial assignments Py, let Cy

be a constraint on y, and let Γ be a set of conflicts for Cy. A partial assignment
α ∈ Py resolves conflicts Γ if every state of α resolves every conflict γ ∈ Γ.
Partial assignment α is a kernel of Γ if α resolves Γ, and no proper subset β of
α exists that resolves Γ. The kernels of Γ is the set {β ∈ Py|β is a kernel of Γ}.

A kernel for Conflict 1 and 2 is

Kernel 1: {O1 = U}.

In particular, no state of Kernel 1 can manifest Conflict 1, since O1 = U
guarantees that the assignment O1 = G of Conflict 1 will not occur. The
same holds for Conflict 2.

Two consequences of these definitions are important. First, the complete set
of kernels characterize all states that are not ruled out by one of the known
conflicts.

Proposition 2 Every state that resolves a set of conflicts Γ is a member of
at least one kernel of Γ. Conversely, every member of the kernels of Γ resolves
Γ.

In addition, conflicts and kernels are related through prime implicants. 7

Proposition 3 Given a set of conflicts Γ, let ∆ denote the conjunction
∧
γ∈Γ
¬(

∧
(xi=vij)∈γ

xi = vij).

Then the kernels of Γ are the prime implicants of ∆.

These two propositions follow by direct analogy to Theorem 3 of [2].

The complete set of kernels for Conflict 1 and 2 consists of

Kernel 1: {O1 = U}

Kernel 2: {A1 = U}

Kernel 3: {O2 = U, A2 = U}.

7 An implicant of a theory Θ is a conjunction of literals that entail Θ. A prime
implicant φ of Θ is an implicant of Θ such that no proper subset of the literals of
φ form an implicant of Θ.
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Our concept of kernel is similar to that of kernel diagnosis in [2]. Beyond
the generalization of kernel diagnosis to CSPs, the primary difference is that a
kernel resolves the known conflicts, while a kernel diagnosis resolve all conflicts.

Finally, in Section 2.5 we generated the kernels of conflicts Γ by first generating
the kernels of each conflict separately. We call these the constituent kernels of
Γ.

Definition 11 Let Cy be a constraint on y, and Γ be a set of conflicts of Cy,
then the constituent kernels of Γ is the set {kernels of γ|γ ∈ Γ}.

For example, given conflicts Γ,

{{O1 = G,O2 = G,A1 = G}

{O1 = G,A1 = G,A2 = G}},

the corresponding set of constituent kernels is

{{{O1 = U}, {O2 = U}, {A1 = U}}

{{O1 = U}, {A1 = U}, {A2 = U}}}.

We use constituent kernels in Section 5.2 to define a procedure for mapping
conflicts to kernels.

Note that previous approaches, such as [1,2] blur the distinction between what
we call conflicts, and constituent kernels. However, these distinctions are con-
ceptually important. A conflict is a set of assignments that entail a particular
set of “conflicting” values. The constituent kernels remove the contribution of
the conflict.

5.2 Mapping Conflicts to All Kernels

Recall for conflict-directed A*, that the function Next-Best-State-Resolving-
Conflicts uses the set of known conflicts to generate a kernel that contains
the best cost state resolving the known conflicts. As we walked through the
Boolean polycell example in Section 2.5, we generated the kernels of a set of
conflicts, Γ, by first generating the constituent kernels of Γ, and then com-
bining them to create the kernels. In this section we state the algorithm for
generating all kernels of Γ. This algorithm generalizes the candidate genera-
tion algorithm introduced in the GDE system [1], and is a stepping stone to
the generation of the best kernel, presented in the next subsection.
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First consider the generation of the constituent kernels of Γ. Note that a state
that manifests a conflict γ ∈ Γ is one that entails the conjunction

∧
xi=vij∈γ

xi = vij .

For example, if a state manifests Conflict 1, {O1 = G,O2 = G,A1 = G}, then
it entails

O1 = G ∧O2 = G ∧A1 = G.

A state that resolves γ is one that entails its negation,

¬

 ∧

xi=vij∈γ

xi = vij


 ,

or equivalently
∨

xi=vij∈γ

xi �= vij .

This clause specifies that at least one assignment of γ does not hold in any
state s that resolves γ. For example, the clause for Conflict 1 is

O1 �= G ∨O2 �= G ∨A1 �= G.

This clause holds in state s exactly when at least one variable of an assignment
in γ is assigned a different element of its domain in state s.

Proposition 4 The set of (constituent) kernels of conflict γ is

Kγ ≡def {{a}|a ∈ (∪xi=vik∈γDxi
)− γ} .

For example, in Conflict 1 the three variables - O1, O2 and A1 - have domain
{G,U}. We create the complete set of constituent kernels for Conflict 1 by re-
placing each assignment of Conflict 1 with its alternative domain assignments,

{{O1 = U}, {O2 = U}, {A1 = U}}.

Likewise, for Conflict 2,

{O1 = G,A1 = G,A2 = G},
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the complete set of constituent kernels is

{{O1 = U}{A1 = U}{A2 = U}}.

The procedure for generating Constituent-Kernels of a set of conflicts, Γ,
is provided in Figure 29, and directly follows from Proposition 4. Function
Constituent-Kernels incurs negligible computational cost; its worst case com-
putational complexity is on the order of

∑
Dxi

∈Dx |Dxi
|.

function Constituent-Kernels(Γ)
returns a set whose elements are sets of kernels for each conflict in Γ.
constituent-kernels ← {}
for γ in Γ

Kγ ← {}
for (xi = vij) in γ

Kγ ← Kγ ∪ {{xi = vik}|vik ∈ Dxi
, vik �= vij}

constituent-kernels ←
Add-To-Minimal-Sets(constituent-kernels, Kγ)

return constituent-kernels

function Add-To-Minimal-Sets(Set, S)
returns Adds S to Set and removes any element of S that is a

superset of another element.
for E in Set

if E ⊂ S
then return Set
else if S ⊂ E

then Set ← remove E from Set
finally return Set ∪ {S}

Fig. 29. Constituent-Kernels generates the kernels for each conflict γ ∈ Γ separately.
Add-To-Minimal-Sets adds set S to Set, while eliminating any element that is a
superset of another. Constituent-Kernels is used by functions Kernels (Figure 30),
Next-Best-Kernel (Figure 31) and Next-Best-State-Resolving-Conflicts (Figure 35).

Next we generate the kernels of Γ from its constituent kernels, by exploiting
the following proposition.

Proposition 5 A kernel k resolves a set of conflicts Γ if and only if it resolves
each conflict γi ∈ Γ. k resolves γi if and only if it contains one of the kernels
of γi.

Hence, each kernel, k ∈ KΓ, is a set that selects at least one kernel from each
set of constituent kernels, Kγ , and takes their union. For example, we might
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combine {O2 = U} from the constituent kernels of Conflict 1 with {A2 = U}
from the constituent kernels of Conflict 2, producing kernel {O2 = U, A2 =
U}.

A kernel must be minimal, hence we exclude any union that is a superset
of another union. For example, combining {O2 = U} from Conflict 1 with
{A1 = U} from Conflict 2 produces {O2 = U, A1 = U}, which is subsumed
by combining {A1 = U} with {A1 = U}, producing {A1 = U}. Finally, to
be consistent a kernel can assign at most one value to any variable; hence, we
eliminate any union containing two distinct assignments for the same variable.
For example, suppose we had constituent kernel {A1 = G} for a third conflict,
which we combined with {A1 = U}, taken from constituents for Conflict 1
and Conflict 2. This would produce {A1 = G,A1 = U}, which is inconsistent
and hence eliminated. The remaining unions represent the complete set of
kernels. For Conflicts 1 and 2 these are {O2 = U, A2 = U}, {A1 = U} and
{O1 = U}.

The corresponding procedure, called Kernels, is given in Figure 30. Kernels is
analogous to the candidate generation algorithm used in the GDE system[1],
whose soundness and completeness was demonstrated by Corollary 1 of [2].

function Kernels(Γ)
returns A set of all kernels that resolve conflicts Γ.
kernels ← {{}}
augmented-kernels ← {}
for Kγ in Constituent-Kernels(Γ)
for K in kernels
if ∃{xi = vij} ∈ Kγ such that xi = vij ∈ K
then augmented-kernels ←

Add-To-Minimal-Sets(augmented-kernels, K)
else
for {xi = vij} in Kγ

if xi is not mentioned in any assignment of K
then augmented-kernels ←

Add-To-Minimal-Sets(augmented-kernels, K ∪ {xi = vij})
kernels ← augmented-kernels
augmented-kernels ← {}

return kernels

Fig. 30. Procedure for generating the kernels of a set of conflicts Γ.

Consider the application of Kernels to Conflict 1 and 2 for Boolean polycell.
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Kernels first generates the set of constituent kernels,

{{{O1 = U}{O2 = U}{A1 = U}}

{{O1 = U}{A1 = U}{A2 = U}}}.

The first run through the outer loop assigns Kγ to the first set of constituent
kernels, and then transfers this to variable kernels,

kernels: {{O1 = U}{O2 = U}{A1 = U}}.

During the second run through the outer loop, Kγ is assigned the second set
of constituent kernels

Kγ : {{O1 = U}{A1 = U}{A2 = U}}.

During the second run, the inner loop uses K to iterate over kernels, first
assigning {O1 = U} to K. It detects that K already contains one of the
elements of Kγ, and hence adds K to augmented-kernels without extension,

augmented-kernels:{{O1 = U}}.

Next the inner loop assigns {O2 = U} to K. This does not contain an element
of Kγ , hence it tries to extend K with each element of Kγ. It starts with
{O1 = U} producing {O1 = U, O2 = U}. This is added to augmented-
kernels using Add-Minimal-Sets. However, {O1 = U, O2 = U} is a superset
of {O1 = U}, which is already a member of augmented-kernels, hence {O1 =
U, O2 = U} is eliminated as not minimal. Next, {A1 = U} is added to K,
creating {O2 = U, A1 = U}, and is successfully added to augmented-kernels.
Finally, {A2 = U} is added to K, creating {O2 = U, A2 = U}, which is also
added, producing

augmented-kernels:{{O1 = U}{O2 = U, A1 = U}{O2 = U, A2 = U}}.

Finally, the inner loop assigns {A1 = U} to K. This contains an element
of Kγ, hence it tries to add {A1 = U} to augmented-kernels without exten-
sion. Minimal-Sets determines that augmented-kernels has an element {O2 =
U, A1 = U}, which is a superset of {A1 = U}, hence this superset is removed
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and {A1 = U} is added to augmented-kernels, producing

{{O1 = U},

{A1 = U},

{O2 = U, A2 = U}}.

This is the familiar set of kernels, previously shown in Figure 12.

Note that the function Kernels is worst case exponential in the number of
conflicts. Generating the set of kernels is equivalent to minimal set covering,
and is NP Hard.

5.3 Generating the Best Kernel

To make conflict-directed A* tractable, we require an efficient means for find-
ing the kernel that contains the best cost state, while generating as few kernels
as possible. To accomplish this we note that the function Kernels, introduced in
the last section, can be viewed as an uninformed, breadth first search through
a space of partial kernels. At each iteration these partial kernels are expanded
to resolve an additional conflict, terminating when all conflicts are resolved.
A partial kernel is pruned if it either proves inconsistent, redundant, or non-
minimal.

In this section we replace this search strategy with an informed search for the
best kernel, implemented by the function Next-Best-Kernel in Figure 31. As we
will see, this search has strong similarities to constraint-based A*, introduced
in the preceding section.

The search tree for the kernels of Boolean polycell was shown in Figure 13.
Each node has an associated conflict and branches to the children of the
node are labeled with the constituent kernels of that conflict. The partial
kernel associated with a node is the set of variable/value assignments along
the path from the root of the tree to that node. Kernels are check marked,
while eliminated nodes are crossed out. For example, the check marked node
at the bottom left of the tree in Figure 13 corresponds to the kernel

{O2 = U, A2 = U},

while the crossed off node to the far left corresponds to

{O2 = U, O1 = U}.
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function Initialize-Best-Kernels(KGP)
returns Kernel generation problem, KGP, with its search-tree initialized.
Best-Kernels[KGP] ← {}
Nodes[KGP] ←

Make-Queue(Make-Search-Tree-Node(Θ[KGP],NoParent))
Visited[KGP] ← {}
return KGP

function Next-Best-Kernel(KGP)
returns the next best cost kernel of Conflicts[KGP]

for kernel generation problem KGP.
f(x) ← G[KGP](g[KGP](x), h[KGP](x))
loop do
if Nodes[KGP] is empty then return failure
node ← Remove-Best(Nodes[KGP], f)
Add State(node) to Visited[KGP]
new-nodes ← Expand-Conflict(node, KGP)
for each new-node in new-nodes

unless ∃ n ∈ Nodes[KGP] such that State(new-node) = State(n)
or State(new-node) is in Visited[KGP]
then Nodes[KGP] ← Enqueue(Nodes[KGP], new-node, f)

if Goal-Test-Kernel[KGP] applied to State(node) succeeds
then best-kernel = State(node)

Best-Kernels[KGP] ←
Add-To-Minimal-Sets(Best-Kernels[KGP], best-kernel)
if best-kernel ∈ Best-Kernels[KGP]
then return best-kernel

end

Fig. 31. Generating the best kernels of a set of conflicts using A* search. A ker-
nel generation problem, KGP, includes a set of Conflicts and initial state Θ = {}.
Functions Goal-Test-Kernel and Expand-Conflict are shown in Figures 32 and 33.
Functions Make-Tree-Node, Root?, State and Theta are the same as for Con-
straint-Based-A*, and were given in Figure 18. g, h, Gmin and gmin are also the
same, and were given in Figure 20.

This second node is not a kernel, even though it resolves all conflicts, because
it is not minimal.

This search tree is closely related to the search tree constructed by constraint-
based A*. The edges of both trees are labeled with assignments, the trees are
both rooted in the empty set, and in both cases the search state of each node
is the set of assignments along the path from the root to that node. Given this
similarity, Next-Best-Kernel is able to use the same functions for creating and
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examining trees - Make-Tree-Node, Root?, State and Theta - as were used in
constraint-based A* (Figure 18).

One difference is that the leaves of the tree for Next-Best-Kernel are kernels,
rather than full assignments. This requires modification to Goal-Test, so that
it returns true as soon as a node covers all constitutent kernels, and hence all
conflicts have been resolved (Figure 32).

function Goal-Test-Kernel(node, problem)
returns True iff the state of node resolves all known conflicts.
if for all Kγ ∈ KΓ[problem], State[node] contains a kernel in Kγ

then return True
else return False

Fig. 32. Goal-Test-Kernels used by Next-Best-Kernel to detect kernels.

Function g and h for evaluating node utility are the same as for constraint-
based A*, and were given in Figure 18. The reason for this is that the partial
kernels and partial states of the two search trees are both partial assignments,
and the utility in both cases is the best utility extension of the partial as-
signment. Note that one difference in behavior is that the value of h for a
goal-node in constraint-based A* will be 0, since the node is a full assignment,
while the value of h for a goal-node for Next-Best-Kernel will typically be
non-zero, since a kernel is a partial assignment.

The remaining difference between the algorithms is the set of children gen-
erated by Next-Best-Kernel versus constraint-based A*. For constraint-based
A*, each child selects a domain element of an unassigned variable. For Next-
Best-Kernel, each child selects a constituent kernel of an unresolved conflict.
This difference requires modification to the node expansion function, as shown
in Figure 33. Recall that the node expansion function of constraint-based A*
(Figures 23 and 24) selects an unassigned variable and creates a child for each
element of its domain. To generate best kernels, we create an expansion func-
tion, called Expand-Conflict, that selects one of the sets of constituent kernels
for an unresolved conflict and creates a child for each kernel in the constituent.
For example, the root node, {}, in Figure 13 does not resolve Conflict 1 or
Conflict 2. It is expanded by selecting Conflict 1 and its constituent kernels
are used to generate three children, labeled O2 = U, O1 = U and A1 = U.
Given multiple possible conflicts to choose from, Expand-Conflict selects the
conflict with the fewest number of constituent kernels. This corresponds to the
standard most-constrained-variable-heuristic, used by most CSP algorithms.

For constraint-based A*, recall that a consequence of mutual preferential in-
dependence is Proposition 1, which allows us to only expand the best child of
a node, rather than all children. This expansion involves ordering the assign-
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ments of the selected variable’s domain based on the assignment’s utility, and
selecting the assignment with the best utility as the best child.

Like constraint-based A*, Next-Best-Kernel also exploits mutual preferential
independence to expand only the best child of a node; however, the criteria
used by Next-Best-Kernel to determine the best child is more complex. The
reason is that Proposition 1, used by constraint-based A*, requires that all the
assignments being considered must refer to the same variable. However, the
assignments in the constituent kernels of a conflict typically refer to different
variables. Hence in the case where the two children being compared have dif-
ferent variables, Proposition 1 does not apply. To address this we introduce an
additional proposition that establishes a criteria for ordering the assignments
of children involving different variables, and we exploit this criteria to expand
only the best child.

Proposition 6 Let c1 and c2 be sibling nodes with parent n, where c1 is
labeled with assignment yi = vij , c2 is labeled with yk = vkl, yi �= yk, and nei-
ther yi nor yk appear in State[n]. Let gmax

yi
and gmax

yk
denote the best attribute

utilities of yi and yk, respectively. If G(gyi
(vij), gmax

yk
) ≥ G(gmax

yi
, gyk

(vkl)), then
there exists a leaf node l1 under c1 such that for all leaf nodes l2 under c2,
g(State[l1]) ≥ g(State[l2]).

The key difference from Proposition 1 is that, during the comparison, the
utility of each child’s assignment is weighted by the best assignment utility
for the other child’s variable. This is because c1 doesn’t restrict the value of
yk, and c2 doesn’t restrict the value of yi. Hence to identify the child with the
best state, the comparison must be performed under the assumption that the
two children take on best utility values for their sibling’s variable.

For example, consider the node labeled O2 = U in Figure 13. The first of
its three children, c1, has assignment O1 = U, and the second child, c2, has
assignment A2 = U. c1 is preferred over c2 if

P (O1 = U)× Pmax(A2) ≥ P (A2 = U)× Pmax(O1).

Simplification demonstrates that the relation is satisfied,

P (O1 = U)× P (A2 = G)≥P (A2 = U)× P (O1 = G),
.01× .995≥ .005× .99,

.00995≥ .00495.

Next, consider how this proposition is incorporated into function Expand-
Conflict of Next-Best-Kernel. Given a node n, Expand-Conflicts begins by
identifying an unresolved conflict. A conflict is unresolved by node n if none

54



of the conflict’s constituent kernels is a subset of State(n). We order the con-
stituent kernels of the conflict using function Better-Kernel?, shown in Figure
33. Let kn denote the nth kernel in this ordering, and cn denote the correspond-
ing child. It follows from Proposition 6 that only the first child, c1, needs to
be expanded. This is performed by function Expand-Conflict-Best-Child in
Figure 33.

function Expand-Conflict(node, problem)
returns the best nodes expanded from node.
return Expand-Conflict-Best-Child(node, problem) ∪

Expand-Next-Best-Sibling(node, problem)

function Expand-Conflict-Best-Child(node, problem)
returns for node, a child with the best cost extension.
if for all Kγ ∈ Constituent-Kernels(Γ[problem])

State[node] contains a kernel in Kγ

then return {}
else return Expand-Constituent-Kernel(node, problem)

function Expand-Constituent-Kernel(node, problem)
returns for node, the child containing the best cost kernel of a

conflict not already resolved by State[node].
Kγ ← the smallest set in Constituent-Kernels(Γ[problem]),

such that no kernel in the set is contained in State[node].
C ← {yi = vij |{yi = vij} ∈ Kγ, yi = vij is consistent with State[node]}
Sort C such that for all i from 1 to |C| − 1,

Better-Kernel?(C[i], C[i + 1], problem) is True
Child-Assignments[node] ← C
yi = vij ← C[1], which is the best kernel in Kγ consistent with State[node]
return {Make-Node({yi = vij}, node)}

function Better-Kernel?(yi = vij, yk = vkl, problem)
returns True if the upper bound utility of a child node that adds

kernel yi = vij is better than a sibling that adds kernel yk = vkl.
if yi = yk

then return gyi
[problem](vij) ≥ gyk

[problem](vkl)
else return G[problem](gyi

[problem](vij), gmax(yk, problem))
≥ G[problem](gmax(yi, problem), gyk

[problem](vkl))

Fig. 33. Expand-Conflict used by Next-Best-Kernel to cover known conflicts. Ex-
pand-Next-Best-Sibling is the same as for Constraint-Based-A* and is shown in
Figure 24. g, h, Gmin and gmin are also the same, and are shown in Figure 20.
Likewise, Make-Tree-Node, Root?, State and Theta are shown in Figure 18.

55



Proposition 6 only holds until one or more of the states of a child cn has been
eliminated. Unlike constraint-based A*, this occurs as soon as cn is expanded
in order to resolve an additional conflict, since that conflict may eliminate one
or more of the states of cn. Hence, as soon as a child of node cn is expanded, the
next best sibling, cn+1, of cn must be expanded as well. The pattern of node
expansion is then to repeatedly replace the best cost node on the search queue
with its best child and its next best sibling. This expansion is achieved with
functions Expand-Conflict (Figure 33) and Expand-Next-Best-Sibling (Figure
24). This approach is in contrast to constraint-based A*, which waits until a
leaf node of cn is expanded, before expanding its next best sibling. An example
of the execution of Next-Best-Kernel has already been given in Section 2.5,
and depicted in Figures 14 through 16.

5.4 The Dynamic Programming Principle Revisited

Recall from Section 4.1 that standard A* search may encounter multiple paths
to the same search state. A* uses the dynamic programming principle to avoid
expanding the sub-optimal paths of each search state. At the end of Section
4.4 we discussed how constraint-based A* did not need to incorporate this
principle, since it generates only one path to each partial assignment. Next-
Best-Kernel, however, may produce multiple paths to the same partial assign-
ment. Hence, to improve the efficiency of Next-Best-Kernel we incorporate a
variant of the dynamic programming principle.

The cost of a partial assignment is independent of the path by which it is
reached, since the utility function G is associative and commutative. As a
result, all search nodes with the same state must have the same cost, and
Next-Best-Kernel does not need to search for the path to a state with the
best utility. Rather, Next-Best-Kernel is free to expand the first node to each
search state that is entered onto the queue.

Next-Best-Kernel does need to avoid extending multiple paths that go to the
same state. To accomplish this Next-Best-Kernel keeps track of nodes that it
has already explored using the variable visited. As each node is queued, we
check to see if a node with the same search-state already exists on the queue
or visited list. If so, then the node is ignored.

Note that this approach is more efficient than generic A* search. The test
for Next-Best-Kernel is performed when a node is added to the queue, rather
than when it is removed, thus reducing the overall growth in search queue size.
The dynamic programming principle was not needed for the simple Boolean
polycell sequence, given in Section 2.5. However, it has a substantial impact
on our performance experiments, discussed in Section 7.
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To summarize the results of this section (Section 5), we introduced an algo-
rithm, called Next-Best-Kernel, that generates the kernels of a set of conflicts
in best first order. Next-Best-Kernel combines A* search with traditional al-
gorithms for generating kernel diagnoses. It achieves efficiency by exploiting
mutual preferential independence and a special case of the dynamic program-
ming principle, in order to restrict the set of nodes expanded during search.
Next-Best-Kernel is used by Conflict-Directed-A* to extract the best state that
resolves the known conflicts, as we will see in the next section. It also provides
an any-time, any-space algorithm for generating parsimonious descriptions of
the best solutions.

6 Conflict-directed A*

This section develops Conflict-Directed-A* and its key supporting function,
Next-Best-State-Resolving-Conflicts. We begin by formally specifying the in-
teraction between the generator that produces the best non-conflicting states,
and the CSP algorithm that tests the consistency of these states. This allows
conflict-directed A* to use a wide range of CSP representations and CSP al-
gorithms. Next we develop conflict-directed A* for the case where we are only
interested in the single best solution, building off of the function Next-Best-
Kernel (Section 5). This case corresponds to the algorithm demonstrated at
the beginning of the paper (Section 2). Finally, we generalize conflict-directed
A* to find any number of leading solutions. To accomplish this we develop
a hybrid version of Next-State-Resolving-Conflicts that unifies Constraint-
based-A* and Next-Best-Kernel, developed in Sections 4 and 5.

6.1 Conflict-directed Generate and Test

The top-level procedure of conflict-directed A* was introduced and demon-
strated in Section 2 and is shown in Figure 8. In this section we discuss the
properties of each of its subroutines. Recall that conflict-directed A* repeat-
edly performs a generate and test loop, where generation is focussed by the set
of known conflicts. The loop first uses Next-Best-State-Resolving-Conflicts to
find the best decision state, according to f , that resolves all known conflicts.
It then uses Consistent? to test the decision state against the CSP to deter-
mine consistency. If the decision state is inconsistent, it then generalizes the
state to one or more conflicts using Extract-State-Conflicts. Finally, these new
conflicts are added to the set of known conflicts, and conflicts that do not of-
fer additional information are removed using Eliminate-Redundant-Conflicts.
This loop terminates if no decision states remains or when the desired set of

57



solutions are found, as determined by Terminate?. 8

The four subprocedures within the Conflict-directed-A*(CSP, y, g) loop are
defined through the following requirements:

Definition 12 Let OCSP = 〈y, g,CSP〉 be an optimal constraint satisfaction
problem, α be a decision state of OCSP, and Γ be the set of known conflicts
of OCSP, then:

Consistent? Consistent?(CSP, α) is True if and only if Cy(α) is consistent.
Extract-State-Conflicts Let ∆ = Extract-State-Conflicts(CSP, α). ∆ is

empty if and only if α is consistent with Cy; otherwise, each δ ∈ ∆ is a
state conflict of α for Cy.

Eliminate-Redundant-Conflicts: Let ∆ = Eliminate-Redundant-Conflicts(Γ),
where Γ is a set of conflicts. Then ∆ ⊂ Γ and States(∆) = States(Γ).

Next-Best-State-Resolving-Conflicts Let α = Next-Best-State-Resolving-
Conflicts(OCSP). Then α = {} if no state in Sy exists that resolves conflicts
Γ and that is not in solutions. Otherwise, α is a decision state in Sy such
that α is not in solutions, α resolves conflicts Γ, and no state β ∈ Sy exists
such that β resolves Γ and g(β) > g(α).

Our development of Conflict-directed-A* does not commit to a specific con-
straint system or implementation of Consistent?, Extract-State-Conflicts and
Eliminate-Redundant-Conflicts.

We do require that Consistent? be able to determine inconsistency as well as
consistency. An inconsistency is typically found using a systematic search pro-
cedure that performs limited inference, such as back track search with forward
checking or the DPLL propositional satisfiability procedure[35]. Local search
methods, such as Min-Conflict [20] or GSAT[21], are efficient at determining
consistency, but can not alone determine inconsistency.

Note that Extract-State-Conflict does not need to return a complete set of
conflicts, and the conflicts are not required to be minimal, since this does not
impact the correctness of the algorithm. Of course a complete set of minimal
conflicts rules out the largest set of inconsistent states. However, this must be
traded against the computational cost of extracting conflicts, since generat-
ing the complete set of minimal conflicts is NP Hard. Extract-State-Conflict
must return at least one conflict when called with a decision state, α, that
is inconsistent. This can always be performed efficiently, since α may always
be returned as a conflict, for example, if no other conflict can be extracted
efficiently.

8 Our implementation includes termination conditions such as finding n leading
solutions, finding all solutions within an order of magnitude cost of the leading
solution, or terminating after m states are tested.
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The most common way to extract a conflict, as mentioned in Section 2.4, is
based on local constraint propagation. Assignments α are propagated using a
local inference rule, such as unit propagation, while maintaining a dependency
trace of the deductions performed. When an inconsistency is derived, the de-
pendency trace is examined to extract the subset of α that was used to derive
the inconsistency. For example, Figure 9 and 10 show the dependency traces
for generating Conflicts 1 and 2, respectively. The dependencies in Figure 7
show how O1 = G, O2 = G, and A2 = G were used to detect the symptom
at F.

The implementation discussed in this paper uses propositional clauses as con-
straints. Consistent? is implemented using a variant of the DPLL satisfiability
procedure [35] that uses Boolean Constraint Propagation (BCP) [39–41,33] to
perform unit propagation incrementally. BCP maintains dependencies during
propagation. Extract-State-Conflict uses these dependencies to quickly extract
a single conflict when an inconsistency is found. A range of alternatives are
possible. For example, a prime implicant algorithm, such as an ATMS[42],
might be used to identify one or more subsets of α that, together with the
CSP constraints, entail False. These algorithms are exponential in the worst
case. It is an open question as to whether or not the benefit of discovering
additional conflicts can out weight the added computational cost.

The function Eliminate-Redundant-Conflicts(Γ) eliminates conflicts that are
redundant in the sense that their removal doesn’t alter the set of states that
manifest one or more of the conflicts in Γ. Note that there does not always
exist a unique subset of Γ that is irredundant. Also note that identifying an
irredundant set of conflicts is a common task studied in the circuit synthe-
sis literature, and is not tractable in the general case. However, Eliminate-
Redundant-Conflicts does not need to eliminate all redundant conflicts, since
the existence of redundant conflicts does not alter the solution, only the solu-
tion time. It is an open empirical question as to whether or not redundant con-
flicts speed up or slow down the process. It is, however, the case that including
a conflict that is a strict superset of another conflict offers no computational
benefit, hence, our implementation of Eliminate-Redundant-Conflicts simply
eliminates these superset conflicts.

6.2 Conflict-directed A*: One Solution

To complete our development of conflict-directed A*, we need to define the
function Next-Best-State-Resolving-Conflicts. We consider here the case where
we are interested only in the single best solution to an optimal CSP. At each
iteration Next-Best-State-Resolving-Conflicts simply extracts the best kernel
and then extends the kernel to the best complete decision state (top, Figure
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34).

To extract the best state of a kernel K, let z be the set of variables not assigned
in kernel K. Then the best cost decision state, s, of K is the one that selects
for each unassigned variable zi ∈ z its best cost value,

s ≡ K ∪
{
zi = vimax | zi ∈ z, vimax = arg max

vij∈Dzi

gi(vij)
}
.

This corresponds to Function Kernel-Best-State, shown in Figure 34. This case
was demonstrated in detail at the beginning of the paper (Section 2).

function Terminate?(OCSP)
returns True when first solution of OCSP is found.
return True iff Solutions[OCSP] is non-empty.

function Next-Best-State-Resolving-Conflicts(OCSP)
returns the best cost state consistent with Conflicts[OCSP].
best-kernel ← Next-Best-Kernel(OCSP)
if best-kernel = failure
then return failure
else return Kernel-Best-State[problem](best-kernel)

function Kernel-Best-State[problem](kernel)
returns the best utility state of kernel.
unassigned ← all variables not assigned in kernel
return kernel ∪ Best-Assignment(unassigned)

function Best-Assignment[problem](variables)
returns the maximum utility assignment to variables.
if variables = {}
then return {}
else yi = one of variables

remaining = variables - {yi}
return {yi = vmax[problem](yi)}∪ Best-Assignment[problem](remaining)

function vmax[problem](yi)
returns the value with the maximum attribute utility for yi.
return arg maxvij∈Di[problem] gi[problem](vij)

Fig. 34. Support functions for Conflict-directed-A* for the case of generating a single
best solution.
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6.3 Conflict-directed A*: Multiple Solutions

function Next-Best-State-Resolving-Conflicts(OCSP)
returns the best cost state consistent with Conflicts[OCSP].
f(x) ← G[problem](g[problem](x), h[problem](x))
loop do
if Nodes[OCSP] is empty
then return failure
else node ← Remove-Best(Nodes[OCSP], f)

Add State(node) to Visited[OCSP]
new-nodes ← Expand-State-Resolving-Conflicts(node, OCSP)
for each new in new-nodes
unless ∃ n ∈ Nodes[OCSP] such that State(new) = State(n)

or State(new) is in Visited[OCSP]
then Nodes[OCSP] ← Enqueue(Nodes[OCSP], new, f)

if Goal-Test-State-Resolves-Conflicts[OCSP](State(node)) succeeds
then return node

end

function Expand-State-Resolving-Conflicts(node, problem)
returns Best nodes expanded from node.
if forall Kγ ∈ Constituent-Kernels(Γ[problem]),

State[node] contains a kernel in Kγ

then if all variables are assigned in State[node]
then return {}
else return Expand-Variable(node, problem)

else return Expand-Conflict(node, problem)

function Goal-Test-State-Resolves-Conflicts(node, problem)
returns True iff node is a complete decision state

that resolves all known conflicts.
if forall Kγ ∈ Constituent-Kernels(Γ[problem]),

State[node] contains a kernel in Kγ

then if all variables are assigned in State[node]
then return True
else return False

else return False

Fig. 35. Support functions for Conflict-directed-A* for the case of generating multi-
ple solutions. Combines expansion functions for Next-Best-Kernel (Figure 33) and
Constraint-based-A* (Figure 35). Terminate? is application specific and is not sup-
plied.

61



Next we extend conflict-directed A* to generate n leading solutions, where n >
1. To accomplish this we introduce a version of Next-Best-State-Resolving-
Conflicts that is able to enumerate, in best first order, several non-conflicting
states of one or more kernels. This is in contrast to the function of the preceding
section, which is only able to enumerate the single best state of each kernel.

Next-Best-State-Resolving-Conflicts, defined in Figure 35, generates kernels
similar to Next-Best-Kernel (Figure 33), and enumerates the states of these
kernels, similar to Constraint-Based-A* (Figure 35). To efficiently focus the
search, it interleaves the processes of generating best kernels and best states.
In particular, at each iteration it selects for expansion the node from the two
search processes that looks most promising according to f . To implement this,
Next-Best-State-Resolving-Conflicts uses a single search queue that contains
nodes of both search types. The function Expand-State-Resolving-Conflicts
expands each node based on type, using Expand-Conflict to expand partial
kernels and Expand-Variable to expand kernels to states. The goal-test func-
tion, Goal-Test-State-Resolves-Conflicts, returns true when a search state is a
complete assignment and resolves all conflicts. The application of the dynamic
programming principle is the same as outlined in Section 5.4 for Next-Best-
Kernel.

6.4 Applying Full Conflict-directed A* to Boolean Polycell

Consider the results of repeatedly invoking the multiple solution version of
Next-Best-State-Resolving-Conflicts (Figure 35), when Conflict-directed-A*
is applied to Boolean polycell. On the first iteration of Conflict-directed-A*,
Next-Best-State-Resolving-Conflicts is called with the root node placed on the
search queue (node n1 of Figure 36) and with no known conflicts. Next-Best-
State-Resolving-Conflicts starts by taking n1 off the queue. Since there are no
conflicts to be resolved, the expansion of n1 and its children is the same as
for constraint-based A*, given in Section 4.5. The best descendants of n1 are
generated in a depth first manner (nodes n2−n6 in Figure 36), producing the
best state,

Candidate 1: {O1 = G,O2 = G,O3 = G,A1 = G,A2 = G}.

Node n6 is a leaf node, hence when it is removed from the search queue,
Expand-State-Resolving-Conflicts generates the next best sibling of that node
and all its ancestors. This is the same as for Constraint-based-A*, and is
indicated on Figure 37 as nodes n7 - n11.
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O3=G

A1=G

O2=G

A2=G

O1=G

None

Constituent Kernels
{}

n1

n2

n3

n4

n5

n6

Fig. 36. Search tree created by Next-Best-State-Resolving-Conflicts to gener-
ate the best utility state, given no conflicts. The best state, Candidate 1, is
{O1 = G,O2 = G, O3 = G,A1 = G, A2 = G}, and is indicated by an arrow.
A closed/open circle indicates an expanded/unexpanded node.

Candidate 1 is returned to Conflict-Directed-A* and tested for consistency. It
proves inconsistent, generating

Conflict 1: {O1 = G,O2 = G,A1 = G}.

Next-Best-State-Resolving-Conflicts is reinvoked with this new conflict and
the current search agenda. Node n11, shown in Figure 37, is taken off the
search queue for expansion. Note that n9−n11 all have the same utility, hence
any of these nodes can be taken from the queue. n11 does not resolve Conflict
1, hence a best child (n12) is generated for n11 that selects the best utility
constituent kernel, {O2 = U}, for Conflict 1. Note that this kernel adds an
additional failure (O2 broken) and hence the utility of n12 is about an order
of magnitude lower than that of n11.

The next best node taken off the search queue is n10, which has the same utility
as n11. This node already resolves Conflict 1, hence the node is recursively
expanded to its best state by selecting an unassigned variable and assigning it
its best utility value. The nodes generated are n13 − n15 shown in Figure 37.
n15 is the best state that resolves all conflicts, and hence is returned as

Candidate 2: {O1 = G,O2 = U, O3 = G,A1 = G,A2 = G}.

63
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{}

{{O2 = U}, {O1 = U}, {A1 = U}}
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n2
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n6 n7
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n11

n12

n13

n14
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Fig. 37. Given conflict {O1 = G,O2 = G,A1 = G},
Next-Best-State-Resolving-Conflicts extends the search tree to generate the
best utility state, {O1 = G, O2 = U, O3 = G,A1 = G,A2 = G}. This state is
indicated by an arrow. A closed/open circle indicates an expanded/unexpanded
node.

n15 is a leaf node, hence, when it is removed from the search queue, Expand-
State-Resolving-Conflicts generates the next best sibling of n15 and all its
ancestors. These are nodes n16 − n18 in Figure 38. Note that Expand-State-
Resolving-Conflicts does not generate a next best sibling for n2, since it was
already generated as n11 when leaf node n6 was expanded.

Conflict-Directed-A* determines that Candidate 2 is also inconsistent, gener-
ating

Conflict 2: {O1 = G,A1 = G,O2 = G}.

This conflict is added and Next-Best-State-Resolving-Conflicts is invoked for
a third round. At this point node n9 is at the top of the queue. It resolves both
Conflict 1 and Conflict 2, hence this node is repeatedly expanded by selecting
the best value of its unassigned variables, generating nodes n19 − n20 (Figure
38), and

Candidate 3: {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}.

This candidate is consistent, hence providing the best diagnosis. At this point
all conflicts have been discovered, hence subsequent invocations of Next-Best-
State-Resolving-Conflicts generates all diagnoses in best first order, without
visiting any additional, inconsistent states.
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O3=U
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n1
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Fig. 38. Given a second conflict, {O1 = G,A1 = G,O2 = G},
Next-Best-State-Resolving-Conflicts extends the search tree to generate the best
utility state, {O1 = U, O2 = G,O3 = G,A1 = G,A2 = G}. This state is indicated
by an arrow. A closed/open circle indicates an expanded/unexpanded node.

7 Experimental Results

We evaluated the performance of constraint-based and conflict-directed A*
both on applications to real world space systems and on randomly generated
problems. Starting with real-world applications, we have employed variants
of conflict-directed A* in a range of model-based diagnosis and model-based
autonomous systems, including Livingstone[8], Burton[9], MiniMe[27] and Ti-
tan[10]. These have been or are being demonstrated on several space systems,
including NASA’s Deep Space One probe, the Air Force TechSat 21 cluster,
NASA’s Messenger mission, NASA’s ST-7 concept mission, and a simulated
version of the Cassini Saturn space probe. The performance of an earlier vari-
ant of conflict-directed A* for the Cassini scenario was reported in [8,33].

The Cassini scenario, discussed in Section 2.2, provides a representative case
study of a complex embedded system. The scenario consists of roughly 80 com-
ponents, which corresponds to 80 decision variables with an average domain
size of roughly four values. Constraints are encoded in propositional logic using
approximately 3,000 propositional variables and 12,000 clauses. This results
in a decision space whose size is approximately 480 and a state space whose
size is approximately 23000.

We compared the performance of conflict-directed A* to that of constraint-
based A* by measuring the total number of nodes expanded and the largest
length of the search queue. This was performed for six failure recovery scenar-
ios supplied by Cassini engineers. Each of these scenarios involved selecting a
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set of component mode changes that re-established the spacecraft’s configu-
ration goals after a failure (i.e., mode selection).

Conflict-directed A* was able to focus the search dramatically for all the test
cases. Performance broke into three categories: Several of the failures involved
simple recoveries, such as the inertial reference unit and accelerometer failures,
whose best recovery action involved changing the mode of a single component.
In these cases conflict-directed A* found the best solution with 12 or less node
expansions and a maximum queue size of 3.

Recoveries of moderate difficulty, such as the main engine overheating or a
spacecraft attitude failure, required recoveries that changed up to 10 compo-
nent modes. These were solved with approximately 50 node expansions and a
maximum queue size of 10.

The most complex recoveries, such as a low acceleration reading, needed ap-
proximately 100 node expansions and a maximum queue size of 50. For all
cases, the computational cost in terms of time and space usage is extremely
modest, compared to the complexity of the search space and the number of
mode changes in the solution.

Constraint-based A* performed well overall, considering the effective size of
the search space, but its performance was much worse in comparison to conflict-
directed A*. Also note that the performance of constraint-based A* was very
sensitive to variable ordering. For comparison with conflict-directed A*, we
consider the most optimistic orderings.

For the family of simplest recoveries, constraint-based A* required at least
50 times as many node expansions as conflict-directed A*, and the increase
in space usage was worse. The increase in the number of expanded nodes
and queue size was a result of considering nodes that could not contribute to
restoring the configuration goal.

For recoveries of moderate complexity, the performance of constraint-based
A* varied considerably, consuming from 20 to over 500 times as much space
and time as conflict-directed A*. This variation was the result of a large de-
pendence on the order of the variables and values searched, and the number
of mode changes in the final solution.

Recoveries of greatest complexity were the most difficult for constraint-based
A*, as well as conflict-directed A*. For these recoveries, constraint-based A*
increased the number of nodes expanded by an average factor of 200 over
conflict-directed A*, and increased the maximum queue size by a factor of
250.

Turning to randomized experiments, we verified the performance improve-
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Problem Parameters Constraint-Based Conflict-Directed Mean CD-CB Ratio
Variables Domain

Size
Decision
Variables

Constraint
Clauses

Clause
Length

Nodes
Expanded

Queue
Size

Nodes
Expanded

Queue
Size

Conflicts
Used

Nodes
Expanded

Queue
Size

30 5 10 10 5 683 1230 3.33 6.33 1.2 4.5% 5.6%
30 5 10 30 5 2360 3490 8.13 17.9 3.2 2.4% 3.5%
30 5 10 50 5 4270 6260 12 41.3 2.6 0.83% 1.1%
30 10 10 10 6 3790 13400 5.75 16 1.6 2.0% 1.0%
30 10 10 30 6 1430 5130 9.71 94.4 4.2 4.6% 5.8%
30 10 10 50 6 929 4060 6 27.3 2.3 3.5% 3.9%
30 5 20 10 5 109 149 4.2 7.2 1.6 13% 13%
30 5 20 30 5 333 434 6.4 9.2 2.2 6.0% 5.4%
30 5 20 50 5 149 197 5.4 7.2 2 12% 11%

Table 1: Average results on randomly-generated problems

1

Fig. 39. Average performance of Constraint-based A* and Conflict-directed A* on
randomly-generated problems.

ments discussed above through a series of experiments on randomly gener-
ated problems. For these experiments each randomized data set was gener-
ated based on five parameters, which characterize optimal CSP problems: the
number of state variables, the maximum domain size of each state variable,
the number of decision variables, the number of constraints, and the size of
each constraint. The size of the variable domains and constraints were selected
with uniform distribution between 2 and the allowed maximum. Cost for each
variable assignment was selected in a similar manner.

Constraint-based A* and conflict-directed A* were applied to the sets of ran-
domly generated problems, and rated, similar to above, based on total number
of nodes expanded and maximum search queue length. The results of these
experiments are shown in Figure 39. Once again the data shows a significant
improvement in performance for conflict-directed A* over constraint-based A*
across the range of problems tested. The degree of improvement varies depend-
ing on how constrained the problem is and the difficulty of the optimization
problem.

The data suggests that the performance benefit of conflict-directed A* over
constraint-based A* increases as the problems become more constrained and as
the maximum domain size increases. For highly constrained problems, conflicts
tend to arise with fewer assignments. This allows conflict-directed A* to rule
out larger portions of the state space that are explored by constraint-based
A*.

Conflict-directed A* also performs well for problems that are lightly-constrained.
Conflict-directed A* performs well because the problem contains fewer con-
flicts. Hence the kernels that resolve all conflicts tend to be short, and are
discovered at a very shallow point in the search. Once the kernel is found,
extracting its best state involves little search. Note that the result for lighty
constrained problems is less significant, simple because these problems are
more easily solved in general.

To summarize, the performance of both constraint-based A* and conflict-

67



directed A* scale well for systems of real-world complexity. The excellent per-
formance of both approaches on the Cassini example demonstrates the effec-
tiveness of the approach to using mutual preferential independence to guide
search. In addition, the substantial and consistent increase in performance of
conflict-directed A* over constraint-based A* demonstrates the effectiveness
of conflict-directed search as a focussing mechanism for real-world applica-
tions. These performance results are confirmed for a broad set of randomly
generated problems.

8 Summary

Many artificial intelligence decision making problems, such as diagnosis, plan-
ning, and embedded systems control, are being translated from CSPs to opti-
mization problems involving a search over a discrete space for the best solution
that satisfies a set of constraints. This has opened a new research frontier at
the boundary between optimization and automated reasoning research.

In Section 3 we formalized this family of problems as optimal constraint sat-
isfaction problems, that is, multi-attribute decision problems whose decision
variables are constrainted by a set of finite domain constraints. We highlighted
the pervasive family of optimal CSPs that are mutually, preferentially inde-
pendent, and in Section 2.2 we demonstrated that the solution to optimal
CSPS with preferential independence is central to a new generation of highly
robust, model-based, embedded systems.

The remainder of the paper introduced three new algorithms for tackling op-
timal CSPS by extending A* search – Constraint-based A*, Conflict-directed
A* and Next-Best-Kernel. Traditional A* search guarantees optimality by vis-
iting all infeasible states whose cost is better than that of the optimal feasible
solution. Each of the algorithms introduced is able to reason about subsets of
these infeasible states implicitly, by exploiting the structure of the CSPs and
the source of conflicts.

Constraint-based A* searches the state space in best first order, using mu-
tual preferential independence (MPI) to construct an admissible heuristic that
guides the search through the space of partial assignments. Constraint-based
A* also exploits MPI to reduce node expansion to a single best child and sib-
ling. Constraint-based A* easily augments existing CSP algorithms. It demon-
strates promising performance both for the Cassini spacecraft scenario, and
for randomly generated problems, as discussed in Section 7.

Conflict-directed A*, the central result of this paper, accelerates best first
search by identifying the sources of conflict within each inconsistent candidate,
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and uses this information to jump over related candidates in the sequence. This
elimination process builds upon the concepts of conflict and kernel, general-
ized from model-based diagnosis[1,2] and dependency-directed search[3–6]. In
Section 7 we saw that this approach leads to a several order of magnitude
increase in performance over constraint-based A*.

At the core of conflict-directed A* is the ability to identify a feasible region
of state space, called a kernel, that contains the best utility state resolving all
known conflicts. The computational challenge is that an exponential number of
kernels may exists in the worst case. We focus the process of generating kernels
towards only the best kernel, by introducing an algorithm, called Next-Best-
Kernel, that combines minimal set covering with A* search. Next-Best-Kernel
guides the search and reduces node expansion by exploiting MPI similar to
Constraint-based A*. In Section 7 we saw, during the Cassini and randomized
experiments using Conflict-directed-A*, that Next-Best-Kernel generates a set
of search nodes that is extremely modest compared to the total size of the
search space.

Next-Best-Kernel also offers a powerful algorithm for candidate generation[1,15,17]
that generates parsimonious descriptions of solutions in best first order. This
results in an any-time, any-space algorithm that generates the most useful
descriptions first, and can be terminated at any point, depending on time and
space limitations.

This paper has focussed on the interrelationship between A* search, constraint
satisfaction, and conflict-directed reasoning. These are just a few of a rich set
of computationally powerful methods that have been developed over the last
decade for solving constraint satisfaction problems. The extension of these
methods to Optimal CSPS is a rich area for future research.
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