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Abstract

Decoupled stochastic mapping (DSM) is a computation-
ally efficient approach to large-scale concurrent mapping
and localization. DSM reduces the computational burden
of conventional stochastic mapping by dividing the environ-
ment into multiple overlapping submap regions, each with
its own stochastic map. Two new approximation techniques
are utilized for transferring vehicle state information from
one submap to another, yielding a constant-time algorithm
whose memory requirements scale linearly with the size of
the operating area. The performance of two different varia-
tions of the algorithm is demonstrated through simulations of
environments with 110 and 1200 features. Experimental re-
sults are presented for an environment with 93 features using
sonar data obtained in a 3 by 9 by 1 meter testing tank.

1. Introduction

The objective of concurrent mapping and localization
(CML) is to enable a mobile robot to build a map of
an unknown environment while concurrently using that
map to navigate. CML has been a central research
topic in the field of mobile robotics due to its the-
oretical challenges and critical importance for appli-
cations [1, 2, 3]. Our approach is based on stochas-
tic mapping (SM), a feature-based approach to CML
first developed by Smith et al. [4] and Moutarlier and
Chatila [5]. One of the key issues that has hampered
previous work in feature-based CML is the map scal-
ing problem [6]. The computational complexity of
stochastic mapping is O(n?), where n is the number
of features in the environment [5]. This complexity
arises from the need to represent an ever-growing num-
ber of correlations between the vehicle and the features
in the map as the size of the map increases. Previous
research has demonstrated that simple strategies which
ignore correlations will become overconfident and di-
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verge [7, 8].

In decoupled stochastic mapping (DSM), the envi-
ronment is represented in terms of multiple globally-
referenced submaps, each with its own vehicle track.
Two new approximation methods, referred to as (1)
cross-map vehicle relocation and (2) cross-map vehicle
updating, are developed for transferring vehicle state
estimate information from one submap to another as
the vehicle transitions between map regions. These
transition strategies are utilized to realize two vari-
ations of the DSM algorithm, single-pass DSM and
multi-pass DSM. Using single-pass DSM, the error
bounds do not improve with time and they become
larger for submap regions that are further from the
origin. In contrast, the multi-pass DSM method can
achieve spatial convergence across all submaps.

2. Stochastic Mapping

We consider the scenario of an autonomous underwater
vehicle (AUV) using forward-looking sonar to perform
CML in an environment consisting of point-like fea-
tures [9, 10]. In our implementation, the AUV senses
features in the environment through range and bearing
measurements. These measurements are used to create
a map of the environment and concurrently to localize
the vehicle. The complete full covariance algorithm,
incorporating data association and track initiation, is
referred to as augmented stochastic mapping (ASM)
and is illustrated in Figure 1. More detail is provided
in Feder et al. [10, 11].

The estimated locations of the robot and the fea-
tures in the map are represented by a single state vector
%[k] = [%.[k]T %;[k]T]7 at each discrete time step &,
where %, [k]T and 4 [k]T = [%,[k]T ... &n[k]T]T are
the estimated robot and feature locations, respectively.
Associated with this state vector is an estimated er-
ror covariance, P[], which represents the errors in the
robot and feature locations, and the cross-correlations
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Figure 1: Augmented stochastic mapping (ASM) [11].
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We denote the vehicle’s state by x,, = [z, y» ¢ v]T
to represent the vehicle’s east position, north position,
heading, and speed, respectively. The state of feature ¢
is represented by x; = [z; v;]T. The dynamic model
used in the algorithm simulates an AUV equipped with
control surfaces and a single aft thruster for propulsion,
moving at a nominal forward speed of 2.5 m/s. The
control input u to the vehicle is given by a change in
heading, d¢, and speed, dv, of the vehicle to model
changes in rudder angle and forward thrust, that is,
ulk] = [6¢ 6v]T. Thus, the dynamic model of the
AUV, (), is given by

P, z[k]
Pff[k]] ' @

x[k + 1] = £(x[k], u[k]) + dx(u[k]), (2

where dy(u[k]) is a white, Gaussian random process
independent of x[0].

The observation model h() for the system is given
by

z[k] = h(x[k]) + dq, 3)

where z[k] is the observation vector of range and bear-
ing measurements. The observation model, h(), de-
fines the (nonlinear) coordinate transformation from
state to observation coordinates. The stochastic pro-
cess d,, is assumed to be white, Gaussian, and inde-
pendent of x[0] and d, and has covariance R. Given
these asumptions, an extended Kalman filter (EKF) is
employed to estimate the state x and covariance P.

3. Decoupled Stochastic Mapping

To overcome the O(n?) complexity of the EKF, the
DSM algorithm divides the environment into multiple
globally-referenced submap regions. Each submap has
its own vehicle position estimate, a set of feature es-

timates and a corresponding estimated covariance ma-
trix. The state estimate of the vehicle and all the fea-
tures of submap A at time k is represented by %4[k].
The covariance is represented by P4[k]:

Py k] Pfylk]

In the current implementation, the size and location
of each submap region is specified a priori based on an
assumed density of features. Submap regions overlap
slightly to prevent excessive map switching. If the ve-
hicle travels into an area for which no submap exists, a
new submap is created. If the vehicle travels into a pre-
viously visited region, then the earliest created submap
containing the current estimated vehicle location is re-
trieved and either cross-map relocation or cross-map
updating is performed.

To illustrate this process, suppose that the vehicle
leaves submap A at time & and reenters submap B. Let
j designate the most recent time step at which B was
the active submap. Cross-map relocation performs the
following steps:

%
b'S

%7« [5hl] PB[k]e[Pf’“[k}‘FPTB)U] Pl

y

7l P7 ] Y
The vehicle state estimate in submap B at time & is ob-
tained by using the current vehicle state estimate from
submap A and the feature state estimate from submap
B from time step j. The current vehicle covariance
from submap A is added to the vehicle covariance for
submap B from time j, and the vehicle-to-feature cor-
relation and feature covariance terms for submap B are
left unchanged.

The goal of cross-map updating is to bring more ac-
curate vehicle estimates from lower to higher maps, to
facilitate spatial convergence. It consists of two steps,
(1) de-correlation (denoted by £~) and (2) EKF updat-
ing (denoted by k™). First, the vehicle state estimate
for submap B is randomized, the vehicle covariance
for submap B is greatly inflated, and the feature co-
variance for submap B is doubled:

2B o? - PL U+ @% PR
XB[k ](— [x?[k]:|’ PB[k: ](— P?T[JJ 2Pff[.ﬂ s

where ¢? designates a random value uniformly dis-
tributed over the region defining submap B and &%
designates a covariance much larger than the size of
submap B. Second, the vehicle state estimate from
submap A, ®A[k], is used as a measurement z, with
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Figure 2: Single-pass decoupled stochastic mapping algo-
rithm. Cross-map vehicle relocation is used for all transitions
between submaps.

covariance P2 [k], in an extended Kalman filter to up-
date the vehicle position in submap B. This can be
summarized by the following equations:

K = PBk HT(HPP [k HT + PA[K])~!
%BkT] « %Bk~]+K(z—HxP[k™))
PEkt] « (I-KH)PBk-]I-KH)T + KPA[K]KT

where H is the 4 by (4 + 2N) matrix [I 0]. More
detail is provided in [12].

Single-pass DSM uses cross-map relocation for all
submap transitions, and is summarized in Figure 2. A
constant time algorithm is obtained, because no op-
erations need to be performed on the state estimates
for inactive submaps. However, once a submap is cre-
ated, the initial error present in the map can never be
reduced, and spatial convergence does not occur. To
slow the growth of spatial errors, a small number of
features (called correspondence features) are included
from the previous submap when a new submap is ini-
tialized [12].

Multi-pass DSM is summarized in Figure 3, and
uses cross-map updating to transition from lower to
higher submaps, and cross-map relocation to transi-
tion from higher to lower submaps. As the vehicle
makes repeated passes through the environment, the
error bounds of all submaps converge.

4. Comparison Between DSM and Full
Covariance Stochastic Mapping

To compare each DSM method with the ASM full co-
variance algorithm, simulations were performed for a
scenario with 110 features randomly distributed over
a 1 km by 1 km area, in the presence of clutter and
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Figure 3: Multi-pass decoupled stochastic mapping. Cross-
map vehicle relocation is used when transitioning from
higher to lower maps, and cross-map vehicle updating is used
when transitioning from lower to higher maps.

Table 1: Simulation parameters.

sampling period, T" 1 sec.
maximum sonar range 200 m
sonar coverage angle +40°
range measurement standard deviation 0.5m
bearing measurement standard deviation 50
feature probability of detection 0.90
vehicle cruise speed 2.5m/s
speed process standard deviation 5% of du
heading process standard deviation 2.0°
dead reckoning speed standard deviation 0.4 m/s
dead reckoning heading standard deviation 3.0°
initial position uncertainty std. dev. 0.7m
initial heading uncertainty std. dev. 5.0°
initial speed uncertainty std. dev. 0.2m/s
gate parameter y 9
clutter parameter A 1
track initiation parameters M=5N=4

dropouts. The desired path of the AUV and the true
feature locations are shown in Figure 4.

The top two plots of Figure 5 show the position er-
rors of the vehicle versus time and the 3o error bounds
for ASM. On the first pass through the environment,
the uncertainty grows as the vehicle is furthest from
the origin, and then decreases when the vehicle returns
close to the origin. On subsequent traversals, the error
bounds are reduced.

For each of the two DSM algorithms, the survey area
is partitioned into four submaps. Each submap bounds
a 525 m by 525 m square region. Figure 4 shows
the location of the submaps as generated by the DSM
algorithm. The numbers signify the order in which
submaps were created.

The middle plots of Figure 5 show the position er-
rors for single-pass DSM. As with the full covari-



ance algorithm, the position uncertainty of the vehicle
grows as the distance from the starting point increases.
Further, after the first pass through the survey path, the
ASM and the single-pass DSM results look very sim-
ilar and achieve close to the same error bounds. The
crucial difference between the methods is that ASM
estimates the correlations between all features, while
single-pass DSM only estimates the correlations within
submaps. ASM is able to exploit all the correlations
and thus reduce the global error at all locations. Single-
pass DSM is unable to reduce the global uncertainty
of submaps below the uncertainty upon creation of the
submap. This can be seen from the “steps” in the north
and east 30 bounds after the completion of the first
pass through the survey area (that is, after the first 2
hours of the mission).

The bottom plots of Figure 5 show the position er-
rors of the vehicle versus time and the 3¢ bounds for
the survey performed by multi-pass DSM. The multi-
pass errors resemble the results for ASM more than
the results from single-pass DSM. Clearly, the vehicle
does better after the first pass through the survey area
(that is, after about 2 hours) than before. Thus, the
algorithm is capable of reducing the global error ev-
erywhere and not only locally in the submaps, as for
single-pass DSM. However, one can see that the error
bounds are a little more uneven than those of ASM,
and reducing the uncertainties takes a little more time.

5. Large-Scale Simulation Results

Next, we will demonstrate results using single-pass
DSM and multi-pass DSM for surveying a large-scale
environment with 1200 features for a mission duration
of over 100 hours, sampling at a rate of 1 Hz. Fig-
ure 6 shows the desired path of the AUV through the
3 km by 3 km survey area, the partition of the survey
area into submaps, and true and estimated positions of
the features in the survey area for the multi-pass DSM
simulation shown in Figure 8.

Figure 7 shows plots of the position errors of the ve-
hicle versus time and the 3¢ bounds when using single-
pass DSM for the survey area of Figure 6. In this sim-
ulation, the vehicle completed 11 laps of the survey
path. The position uncertainty of each submap grows
as a function of submap number.

Figures 8 and 9 show the position errors of the ve-
hicle versus time when using multi-pass DSM for two
different survey paths. In Figure 8, the vehicle follows
the survey path indicated in Figure 6, whereas in Fig-
ure 9 the vehicle follows an alternating survey path that
rotates the path given in Figure 6 by 90 degrees after

Table 2: DSM experiment parameters.

sampling period, T" 1 sec.
maximum sonar range 250 cm
sonar coverage angle +40°
range measurement standard deviation 2cm
bearing measurement standard deviation 5°
feature probability of detection 0.90
vehicle cruise speed 10 cm/s
speed process standard deviation 5% of dv
heading process standard deviation 2.0°
dead reckoning speed standard deviation 0.45 cm/s
dead reckoning heading standard deviation 3.0°
initial position uncertainty std. dev. 0.7cm
initial heading uncertainty std. dev. 5.0°
initial speed uncertainty std. dev. 0.2 cm/s
gate parameter y 9
clutter parameter A 1
track initiation parameters M=5N=4

each complete circuit of the environment.

The multi-pass DSM shows a considerable improve-
ment over single-pass DSM in the long run as the
survey area is revisited. However, during the first
pass through the survey area, the maximum uncertainty
when using multi-pass DSM is more than 30% higher
than the result when using single-pass DSM. Single-
pass DSM should be used when the survey area is to
be traversed only once and multi-pass DSM should be
used if one anticipates multiple traversals of the envi-
ronment.

The normalized squared state errors [13] for the ve-
hicle state estimates are also shown in Figures 7, 8, and
9. The normalized squared errors are reasonably well-
behaved for the single-pass DSM run. However, Fig-
ure 8 indicates when the same repetitive survey path is
used with multi-pass DSM, the amount of normalized
squared errors falling outside the 99% error bounds is
unacceptably high. However, this situation improves
tremendously when the vehicle follows an alternating
survey path, as illustrated by the mission shown in Fig-
ure 9. When the vehicle is able to observe each feature
from many different survey directions, the normalized
errors are very well-behaved.

6. Testing Tank Experiment

We now present a simple multi-pass DSM experiment
for further investigation of the approach. The parame-
ters for the mission were chosen so as to simulate an
AUV scaled down by a factor of 100. A 500 kHz
mechanically scanned sonar was mounted on a robotic
positioning system and scanned over a +40° sector at
each sensing location. Each scan took approximately 2
minutes.



In the experiment, 93 fishing bobbers were used as
features and were randomly placed in the testing tank
as shown by the crosses in Figure 10. The sonar re-
turns from the tank walls were discarded by time gat-
ing. The sonar trajectory was set to perform a lawn-
mower path starting at the lower right corner of the
tank and moving towards the left. The estimated result
from the DSM algorithm was compared to the true po-
sition of the sonar as obtained from position encoders
on the robotic positioning system. The entire mission
lasted about 1250 time steps. The resulting position
estimate errors and the normalized squared state errors
for the experiment are shown in Figure 11.

7. Conclusion

This paper has presented a new, computationally ef-
ficient method for large-scale CML and demonstrated
its performance through simulations and experiments.
The single-pass and multi-pass DSM algorithms yield
performance that is comparable to full covariance
stochastic mapping, while maintaining constant com-
putational requirements. Further work is necessary
to explore the limits of the approximations employed
by the cross-map relocation and cross-map updating
submap transition strategies. For example, the normal-
ized squared errors of multi-pass DSM are too large
when a repetitive survey path is followed (Figure 8),
but are quite good when an alternating survey path is
followed (Figure 9). The results are encouraging, how-
ever, because they demonstrate successful stochastic
mapping on a scale an order of magnitude larger than
any results previously published.

Work in progress is investigating alternative submap
transition strategies, for example using covariance in-
tersection [7]. Provably consistent error bounds can be
achieved at the expense of a linear-time algorithm that
maintains current vehicle-to-feature cross-correlation
terms for all inactive submaps. Our current and fu-
ture research aims to achieve a provably consistent,
constant-time algorithm that can achieve spatial and
temporal convergence, without an undue increase in
data association complexity.
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Figure 4: Top: the desired survey path of the vehicle and
the location of the 110 randomly distributed point features
(crosses). The vehicle starts at (0,0) meters and follows the
path of the arrows. Bottom: the submap partition of the sur-
vey area as generated by the two DSM algorithms.
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Figure 6: Top: The desired survey path of the vehicle in the
3 km by 3 km survey area with 1200 features. Middle: The
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Figure 5: Errors and 3¢ bounds produced by full covariance
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(bottom) surveys of the region shown in Figure 4

partition of the survey area into 36 submaps. Bottom: The
true feature positions (marked by “x ) and the estimated fea-
ture positions (marked by ‘+’) and 3¢ error ellipses for the
long duration multi-pass DSM run.
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an alternating survey strategy that rotates the path given in
Figure 6 by 90 degrees after each complete circuit of the en-
vironment. The first two cycles through the environment re-
sult in the following submap transition sequence: 1, 2, 3, .
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manner, improved normalized squared errors are obtained.
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