Massachusetts Institute of Technology

16.412J/6.834J Intelligent Embedded Systems

Problem Set #2 Solutions

Problem 1 – Simple Planning Problem

A.

3 times

B.

Fire-open-1(v6, v3)

Fire-rocket-motor()

Assert-motor-fired-one-time()

Fire-close-top-2(v6, v3, v5)

Shut-off-rocket-motor()

Assert-motor-stopped-one-time()

Fire-open-1(v5, v2)

Assert-fuel-flowing-bottom(v6, v5)

Fire-rocket-motor()

Assert-motor-fired-two-times()

C. For the goal state specified in B, solve this problem (manually) using the POP algorithm. Sketch the final partial-order plan using diagrams of the same form as those used in Ch. 11 of the Russell and Norvig text. Also include a few of the intermediate partial-order plans.

[image: image1.wmf](fo1 v6 v3)

(frm)

(fo v6)

(fct2 v6 v3 v5)

(fo v6)

(fo1 v5 v2)

(fo1 v4 v1)

(affb v5 v4)

(fo v5)

(ff v4)

(affb v6 v5)

(fo v6)

(ff v5)

(amfot)

(on rm)

(sorm)

(fnf v6)

(on rm)

(amsot)

(one tmf)

(off rm)

(frm)

(off rm)

(ff v6)

(amftt)

(on rm)

(one tmf)

(one tms)

(two tmf)

D. For the goal state specified in B, solve this problem (manually) using the Graphplan algorithm. Draw the plan graph using the format used in Ch. 11 of the Russell and Norvig text.

The following plan graph omits the no-op relations (for brevity), and makes extensive use of abbreviations. Also, mutex relations are expressed in text rather than graphic form in order to keep the graphs legible.

[image: image2.wmf](no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

Level 1

(no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

(fo v4)

(fo v5)

(fo v6)

(fnf v4)

(fnf v5)

(fnf v6)

(ff v4)

(ff v5)

(ff v6)

(fo1 v4 v1)

(afnf v4)

Mutex relations for actions from level 0 to 1:

(fo1 v4 v1) – (noop nc v4)

(fo1 v4 v1) – (afnf v4)

(fo1 v5 v2) – (noop nc v5)

(fo1 v5 v2) – (afnf v5)

(fo1 v6 v3) – (noop nc v6)

(fo1 v6 v3) – (afnf v6)

Mutex relations for level 1:

(fo v4) – (nc v4)

(fo v4) – (fnf v4)

(fo v5) – (nc v5)

(fo v5) – (fnf v5)

(fo v6) – (nc v6)

(fo v6) – (fnf v6)

(fnf v4) – (ff v4)

(fnf v5) – (ff v5)

(fnf v6) – (ff v6)

[image: image3.wmf]Level 1

(no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

(fo v4)

(fo v5)

(fo v6)

(fnf v4)

(fnf v5)

(fnf v6)

(ff v4)

(ff v5)

(ff v6)

Level 2

(no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

(fo v4)

(fo v5)

(fo v6)

(fnf v4)

(fnf v5)

(fnf v6)

(ff v4)

(ff v5)

(ff v6)

(on rocket)

(fc v2)

(fc v3)

(afft v6 v3)

(fct2 v6 v3 v5)

(fct1 v6 v3 v5)

(affb v6 v5)

frm

Fo1, afnf, from previous page, are omitted

here for the sake of brevity.

Can’t do fo2, fo3, afni, sorm, amfot, amsot,

amftt, amstt, due to mutex constraints.

(afft v5 v2), (afft v4 v1)

similar

(fct2 v5 v2 v4) similar

(fct1 v5 v2 v4) similar

(affb v5 v4) similar

Mutex relations for actions from level 1 to 2:

(afft v4 v1) – (fo1 v4 v1)

(afft v4 v1) – (noop ff v4)

(afft v4 v1) – (fct2 v5 v2 v4)

(afft v4 v1) – (noop fnf v4)

(afft v4 v1) – (afnf v4)

(afft v4 v1) – (noop nc v4)

(afft v5 v2) – (fo1 v5 v2)

(afft v5 v2) – (noop ff v5)

(afft v5 v2) – (fct2 v5 v2 v4)

(afft v5 v2) – (fct2 v6 v3 v5)

(afft v5 v2) – (fct1 v6 v3 v5)

(afft v5 v2) – (noop fnf v5)

(afft v5 v2) – (afnf v5)

(afft v5 v2) – (noop nc v5)

(afft v6 v3) – (fo1 v6 v3)

(afft v6 v3) – (noop ff v6)

(afft v6 v3) – (fct2 v6 v3 v5)

(afft v6 v3) – (fct1 v6 v3 v5)

(afft v6 v3) – (noop fnf v6)

(afft v6 v3) – (afnf v6)

(afft v6 v3) – (noop nc v6)

(affb v5 v4) – (fo1 v4 v1)

(affb v5 v4) – (noop nc v5)

(affb v5 v4) – (noop ff v5)

(affb v5 v4) – (fo1 v5 v2)

(affb v6 v5) – (fo1 v5 v2)

(affb v6 v5) – (noop nc v6)

(affb v6 v5) – (noop ff v6)

(affb v6 v5) – (fo1 v6 v3)

(fo1 v4 v1) – (noop nc v4)

(fo1 v4 v1) – (afnf v4)

(fo1 v4 v1) – (fct2 v5 v2 v4)

(fo1 v4 v1) – (fct1 v5 v2 v4)

(fo1 v4 v1) – (noop fnf v4)

(fo1 v4 v1) – (noop fo v4)

(fo1 v5 v2) – (noop nc v5)

(fo1 v5 v2) – (afnf v5)

(fo1 v5 v2) – (fct2 v6 v3 v5)

(fo1 v5 v2) – (fct1 v6 v3 v5)

(fo1 v5 v2) – (noop fnf v5)

(fo1 v5 v2) – (noop fo v5)

(fo1 v6 v3) – (noop nc v5)

(fo1 v6 v3) – (afnf v5)

(fo1 v6 v3) – (fct2 v6 v3 v5)

(fo1 v6 v3) – (fct1 v6 v3 v5)

(fo1 v6 v3) – (noop fnf v5)

(fo1 v6 v3) – (noop fo v6)

(fo1 v6 v3) – frm

(fct1 v5 v2 v4) – (noop nc v5)

(fct1 v5 v2 v4) – (noop ff v5)

(fct1 v5 v2 v4) – (noop no v2)

(fct1 v5 v2 v4) – (fct2 v6 v3 v5)

(fct1 v5 v2 v4) – (fct2 v5 v2 v4)

(fct1 v5 v2 v4) – (noop fnf v4)

(fct1 v5 v2 v4) – (afnf v4)

(fct1 v5 v2 v4) – (noop nc v4)

(fct1 v6 v3 v5) – (noop nc v6)

(fct1 v6 v3 v5)– (noop ff v6)

(fct1 v6 v3 v5)– (noop no v3)

(fct1 v6 v3 v5) – (fct2 v6 v3 v5)

(fct1 v6 v3 v5) – (noop fnf v5)

(fct1 v6 v3 v5) – (afnf v5)

(fct1 v6 v3 v5) – (noop nc v5)

(fct2 v5 v2 v4) – (noop nc v5)

(fct2 v5 v2 v4) – (noop no v2)

(fct2 v5 v2 v4) – (noop ff v5)

(fct2 v5 v2 v4) – (fct2 v6 v3 v5)

(fct2 v5 v2 v4) – (noop ff v4)

(fct2 v5 v2 v4) – (noop fo v4)

(fct2 v5 v2 v4) – (noop fnf v5)

(fct2 v6 v3 v5) – (noop nc v6)

(fct2 v6 v3 v5) – (noop no v3)

(fct2 v6 v3 v5) – (noop ff v6)

(fct2 v6 v3 v5) – (noop ff v5)

(fct2 v6 v3 v5) – (noop fo v5)

(fct2 v6 v3 v5) – (noop fnf v6)

(afnf v4) – (noop ff v4)

(afnf v4) – (noop fo v4)

(afnf v4) – (noop fnf v4)

(afnf v5) – (noop ff v5)

(afnf v5) – (noop fo v5)

(afnf v5) – (noop fnf v5)

(afnf v6) – (noop ff v6)

(afnf v6) – (noop fo v6)

(afnf v6) – (noop fnf v6)

(frm) – (fct2 v6 v3 v5)

(frm) – (noop nc v6)

(frm) – (noop fnf v6)

Mutex relations for level2:

(nc v5) – (fc v2)

(nc v5) – (ff v5)

(nc v5) – (fo v5)

(nc v6) – (fc v3)

(nc v6) – (ff v6)

(nc v6) – (fo v6)

(nc v4) – (fo v4)

(fnf v4) – (ff v4)

(fnf v4) – (fo v4)

(fnf v5) – (ff v5)

(fnf v6) – (ff v6)

(fnf v6) – (on rm)

(ff v4) – (nc v4)

(ff v5) – (nc v5)

(ff v6) – (nc v6)

(no v2) – (fc v2)

(no v3) – (fc v3)

(on rm) – (off rm)

(on rm) – (fnf v6)

(on rm) – (nc v6)

(fc v2) – (no v2)

(fc v3) – (no v3)

E. For the goal state specified in B, solve this problem (manually) using the FF algorithm. Summarize the steps of the algorithm. Be sure to include the relaxed plan graph.

[image: image4.wmf](no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

Level 1

(no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

(fo v4)

(fo v5)

(fo v6)

(fnf v4)

(fnf v5)

(fnf v6)

(ff v4)

(ff v5)

(ff v6)

(fo1 v4 v1)

(afnf v4)

[image: image5.wmf]Level 1

(no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

(fo v4)

(fo v5)

(fo v6)

(fnf v4)

(fnf v5)

(fnf v6)

(ff v4)

(ff v5)

(ff v6)

Level 2

(no v1)

(no v2)

(no v3)

(nc v4)

(nc v5)

(nc v6)

(off rocket)

(zero times-fired)

(fo v4)

(fo v5)

(fo v6)

(fnf v4)

(fnf v5)

(fnf v6)

(ff v4)

(ff v5)

(ff v6)

(on rocket)

(fc v2)

(fc v3)

(afft v6 v3)

(fct2 v6 v3 v5)

(fct1 v6 v3 v5)

(affb v6 v5)

frm

Fo1, afnf, from previous page, are omitted

here for the sake of brevity.

(afft v5 v2), (afft v4 v1)

similar

(fct2 v5 v2 v4) similar

(fct1 v5 v2 v4) similar

(affb v5 v4) similar

[image: image6.wmf]Level 2

(zero times-fired)

(fnf v4)

(fnf v5)

(fnf v6)

(on rocket)

(fc v2)

(fc v3)

Level 3

(zero times-fired)

(fnf v4)

(fnf v5)

(fnf v6)

(on rocket)

(fc v2)

(fc v3)

(one times-fired)

(amfot)

(afni v3 v5)

(ff v6)

For the sake of brevity, not all facts are shown here

(see previous pages for the rest of the facts).

Similarly, actions on previous pages exist here

identically, but are not shown. Level 3 adds one

new fact (one times-fired).

(afni v2 v4) similar

[image: image7.wmf]Level 3

(fnf v4)

(fnf v5)

(fnf v6)

(on rocket)

(ff v6)

Level 4

(fnf v4)

(fnf v5)

(fnf v6)

(on rocket)

(ff v6)

For the sake of brevity, not all facts are shown here

(see previous pages for the rest of the facts).

Similarly, actions on previous pages exist here

identically, but are not shown. Level 4 adds no new

facts.

(off rocket)

(sorm)

[image: image8.wmf]Level 4

(on rocket)

(off rocket)

Level 5

(on rocket)

(off rocket)

(zero times-fired)

(one times-fired)

(zero times-fired)

(one times-fired)

(one times-stopped)

(amsot)

As before, for the sake of brevity, not all facts and

actions are shown here. Level 5 adds one new fact

(one times-stopped).

Level 6 adds the fact two times fired.

F.

Graphplan output:

1 fire-open-1_v5_v2

1 fire-open-1_v6_v3

1 assert-fuel-not-flowing_v4

2 fire-close-top-2_v5_v2_v4

2 fire-rocket-motor

3 fire-close-top-2_v6_v3_v5

3 fire-open-1_v4_v1

3 assert-motor-fired-one-time

4 assert-fuel-flowing-bottom_v5_v4

4 shut-off-rocket-motor

5 assert-fuel-flowing-bottom_v6_v5

5 assert-motor-stopped-one-time

6 fire-rocket-motor

7 assert-motor-fired-two-times

Actions with same number represent actions that can be done in parallel. Note that this plan satisfies the constraints, even if it is physically un-realistic. Also, note that this chooses the path through v1 instead of v2 for the second firing.

G. Discuss the advantages and disadvantages of each algorithm with respect to this problem.

FF faster, Graphplan generates parallel plan.

H. Discuss limitations of the STRIPS language for this sort of problem.

[The need for these assert kinds of actions is annoying and unfortunate.]

Better abstractions for relationships between objects, and complex functions (whether there is flow to the rocket motor). No inferencing

Problem 2 – Forward State-Space Search

Attempt to solve problem 1 using forward state-space search (see Russell and Norvig, Ch. 11, for a description of this algorithm.

A. Draw the first two levels of the search tree (assuming breadth-first search).

[image: image9.wmf]State 0

(no v1) (no v2) (no v3)

(nc v4) (nc v5) (nc v6)

(off rocket)

(zero times-fired)

State 1

State 0

- (nc v4)

+ (fo v4) (ff v4)

(fo1 v4 v1)

State 2

State 0

- (nc v5)

+ (fo v5) (ff v5)

(fo1 v5 v2)

State 3

State 0

- (nc v6)

+ (fo v6) (ff v6)

(fo1 v6 v3)

State 4

State 0

+ (fnf v4)

(afnf v4)

State 5

State 0

+ (fnf v5)

State 6

State 0

+ (fnf v6)

(afnf v5)

(afnf v6)

[image: image10.wmf]State 1

State 0

- (nc v4)

+ (fo v4) (ff v4)

State 2

State 0

- (nc v5)

+ (fo v5) (ff v5)

State 3

State 0

- (nc v6)

+ (fo v6) (ff v6)

State 4

State 0

+ (fnf v4)

State 5

State 0

+ (fnf v5)

State 6

State 0

+ (fnf v6)

(fo1 v5 v2)

(fo1 v6 v3)

(afnf v5)

(afnf v6)

(afft v4 v1)

(fo1 v4 v1)

(fo1 v6 v3)

(afnf v4)

(afnf v6)

(afft v5 v2)

(fo1 v4 v1)

(fo1 v5 v2)

(afnf v5)

(afnf v6)

(afft v6 v3)

(frm)

(fo1 v5 v2)

(fo1 v6 v3)

(afnf v5)

(afnf v6)

(fo1 v4 v1)

(fo1 v5 v2)

(fo1 v6 v3)

(afnf v4)

(afnf v6)

(fo1 v4 v1)

(fo1 v5 v2)

(fo1 v6 v3)

(afnf v4)

(afnf v5)

(fo1 v4 v1)

It should be clear from these diagrams that the search tree for breadth-first forward search grows exponentially and becomes huge after just a few levels. By comparison, the search structures for the more sophisticated planning algorithms are small and manageable.

B. Estimate the size of the full search tree.

Depth of the search tree is bounded by the maximum possible number of firings, which, in turn, is bounded by the number of rungs in the valve ladder.

A very rough estimate can be obtained by considering that it takes approximately 3 steps between each rocket firing (see results from problem 1). After each firing, there is one less valve configuration available (one less rung in the ladder). Suppose that there are, on average, k * n actions possible at each step, where n is the number of rungs initially on the ladder, and k is a constant representing average number of actions possible per rung. Thus, the expansion of the tree for the first 3 steps is of order
[image: image11.wmf](

)

3

kn

 . After the first 3 steps, a rocket firing has occurred, and there are n – 1 rungs left on the ladder. Therefore, the expansion of the tree for the next 3 steps is of order
[image: image12.wmf](

)

(

)

3

1

-

n

k

. More generally, this can be written for the entire tree as

[image: image13.wmf](

)

(

)

Õ

-

=

=

-

1

0

3

n

i

i

i

n

k

C. Is the solution to this problem unique? If not, are some solutions more optimal than others (in terms of number of steps)? Is forward state-space search guaranteed to find the optimal solution?

The solution is not unique because the second firing can be achieved either by opening V5 (the most sensible approach) or by closing V2 and opening V4 and V5. The first solution is obviously more optimal than the other.

If depth-first search is used, the non-optimal solution might be found before the optimal one. If breadth-first search is used, the optimal solution will be found first because breadth-first search is exhaustive at each level of the search tree.

D. Discuss how the size of the search tree increases as the number of “rungs” in the valve ladder , and the number of required firings increases.

The number of rungs dictates the maximum number of possible firings. The size of the search tree increases according to the formula given in part B.

E. Would backward state-space search work better for this problem?

For this problem, the goal state is very specific (it consists of one proposition). This suggests that a backward state-space search would likely work better than a forward search because a backward search would focus on actions relevant to achieving the goal (see also section on backward search for planning in Russell and Norvig text).

Problem 3 – Using Planning Software for Larger Problems

The spare tire problem is a well-known benchmark problem for planning algorithms (see Russell and Norvig, Ch. 11, for description of this problem).

In this exercise, you will use provided planning software to generate plans that solve the spare tire problem. See the web site for detailed information on how to run this software. Note that the web site also contains formulations for each program. This is necessary because, although the problem is the same, each program requires the formulation to be specified in its own format. Although the formats are not identical, it should be clear that they formulate the same problem.

A. Solve this problem using the Graphplan software. Provide the generated plan.

1 open_boot

2 fetch_jack_boot

2 fetch_pump_boot

2 fetch_wrench_boot

2 fetch_wheel2_boot

3 loosen_nuts_the-hub

3 inflate_wheel2

4 jack-up_the-hub

4 put-away_pump_boot

5 undo_nuts_the-hub

6 remove-wheel_wheel1_the-hub

7 put-on-wheel_wheel2_the-hub

7 put-away_wheel1_boot

8 do-up_nuts_the-hub

9 jack-down_the-hub

10 tighten_nuts_the-hub

10 put-away_jack_boot

11 put-away_wrench_boot

12 close_boot

B. Solve this problem using the FF software. Provide the generated plan.

 0: OPEN BOOT

 1: FETCH PUMP BOOT

 2: INFLATE R1

 3: FETCH JACK BOOT

 4: FETCH WRENCH BOOT

 5: LOOSEN NUTS1 THE-HUB1

 6: FETCH R1 BOOT

 7: JACK-UP THE-HUB1

 8: UNDO NUTS1 THE-HUB1

 9: REMOVE-WHEEL W1 THE-HUB1

 10: PUT-ON-WHEEL R1 THE-HUB1

 11: PUT-AWAY W1 BOOT

 12: PUT-AWAY PUMP BOOT

 13: DO-UP NUTS1 THE-HUB1

 14: JACK-DOWN THE-HUB1

 15: TIGHTEN NUTS1 THE-HUB1

 16: PUT-AWAY JACK BOOT

 17: PUT-AWAY WRENCH BOOT

 18: CLOSE BOOT

C. Solve this problem using UCPOP. Provide the generated plan.

UCPOP is not able to solve this problem using default settings. It gives up after about two minutes of running (on a >1 Ghz processor). It doesn’t come close to producing a reasonable plan in this time. It is able to solve some of the simpler sub-problems in the domain file (see fix1 – fix5).

Note that the UCPOP documentation suggests writing a special controller, with domain-specific heuristics, in order to solve this problem.

One reason that UCPOP has trouble with this problem is that there are many facts in the goal state. Therefore, a backward-searching engine, such as the one used in UCPOP, may explore many irrelevant actions, resulting in a long search. Another reason is that the UCPOP Lisp implementation is inefficient (a C version is available and is said to run 10 times faster).

D. Compare the plans generated by these algorithms. Are they the same? If not, which is best? Try to come up with a better plan manually.

Graphplan is optimal, especially if there is another resource available (someone to help with the steps that can be done in parallel).

Graphplan and FF have the same number of total steps (19), and in fact, are identical. The only difference is that FF does not take advantage of the fact that some steps could be done in parallel (it serializes all steps).

Neither takes into account potential costs of moving back and forth between the wheel and the boot. It might be more efficient, in real life, to carry several things at once. Such a level of complexity is not modeled in this formulation, however.

E. For each algorithm, hypothesize a change to the formulation that will make the problem more difficult for that algorithm. Check whether or not your hypothesis is true by testing it with the algorithm.

One way to make the problem more difficult is to change more tires. Here is an FF formulation (facts file) that requires changing 3 tires instead of 1.

(define (problem tireworld-3)

(:domain tyreworld)

(:objects

wrench jack pump - tool

the-hub1 the-hub2 the-hub3

- hub

nuts1 nuts2 nuts3

- nut

boot - container

r1 w1 r2 w2 r3 w3

- wheel

)

(:init

(in jack boot)

(in pump boot)

(in wrench boot)

(unlocked boot)

(closed boot)

(intact r1)

(in r1 boot)

(not-inflated r1)

(intact r2)

(in r2 boot)

(not-inflated r2)

(intact r3)

(in r3 boot)

(not-inflated r3)

(on w1 the-hub1)

(on-ground the-hub1)

(tight nuts1 the-hub1)

(fastened the-hub1)

(on w2 the-hub2)

(on-ground the-hub2)

(tight nuts2 the-hub2)

(fastened the-hub2)

(on w3 the-hub3)

(on-ground the-hub3)

(tight nuts3 the-hub3)

(fastened the-hub3)

)

(:goal

(and

(on r1 the-hub1)

(inflated r1)

(tight nuts1 the-hub1)

(in w1 boot)

(on r2 the-hub2)

(inflated r2)

(tight nuts2 the-hub2)

(in w2 boot)

(on r3 the-hub3)

(inflated r3)

(tight nuts3 the-hub3)

(in w3 boot)

(in wrench boot)

(in jack boot)

(in pump boot)

(closed boot)

)

)

)

The resulting plan for this is as follows.

step 0: OPEN BOOT

 1: FETCH PUMP BOOT

 2: INFLATE R1

 3: INFLATE R2

 4: INFLATE R3

 5: FETCH JACK BOOT

 6: FETCH WRENCH BOOT

 7: LOOSEN NUTS1 THE-HUB1

 8: LOOSEN NUTS2 THE-HUB2

 9: LOOSEN NUTS3 THE-HUB3

 10: FETCH R1 BOOT

 11: FETCH R2 BOOT

 12: FETCH R3 BOOT

 13: JACK-UP THE-HUB1

 14: UNDO NUTS1 THE-HUB1

 15: REMOVE-WHEEL W1 THE-HUB1

 16: PUT-ON-WHEEL R1 THE-HUB1

 17: JACK-DOWN THE-HUB1

 18: JACK-UP THE-HUB2

 19: UNDO NUTS2 THE-HUB2

 20: REMOVE-WHEEL W2 THE-HUB2

 21: PUT-ON-WHEEL R2 THE-HUB2

 22: JACK-DOWN THE-HUB2

 23: JACK-UP THE-HUB3

 24: UNDO NUTS3 THE-HUB3

 25: REMOVE-WHEEL W3 THE-HUB3

 26: PUT-ON-WHEEL R3 THE-HUB3

 27: DO-UP NUTS3 THE-HUB3

 28: JACK-DOWN THE-HUB3

 29: TIGHTEN NUTS3 THE-HUB3

 30: JACK-UP THE-HUB1

 31: DO-UP NUTS1 THE-HUB1

 32: JACK-DOWN THE-HUB1

 33: TIGHTEN NUTS1 THE-HUB1

 34: JACK-UP THE-HUB2

 35: DO-UP NUTS2 THE-HUB2

 36: JACK-DOWN THE-HUB2

 37: TIGHTEN NUTS2 THE-HUB2

 38: PUT-AWAY W1 BOOT

 39: PUT-AWAY W2 BOOT

 40: PUT-AWAY W3 BOOT

 41: PUT-AWAY PUMP BOOT

 42: PUT-AWAY JACK BOOT

 43: PUT-AWAY WRENCH BOOT

 44: CLOSE BOOT

This certainly looks reasonable, and may well be optimal. FF takes less than 1/10 second to generate this (on a >1Ghz processor).

A similar formulation for Graphplan is as follows.

(wrench Object)

(jack Object)

(pump Object)

(boot Container)

(hub1 Hub)

(hub1 Object)

(hub2 Hub)

(hub2 Object)

(hub3 Hub)

(hub3 Object)

(nuts1 Nut)

(nuts1 Object)

(nuts2 Nut)

(nuts2 Object)

(nuts3 Nut)

(nuts3 Object)

(wheel1 Object)

(wheel2 Object)

(wheel1 Wheel)

(wheel2 Wheel)

(wheel3 Object)

(wheel4 Object)

(wheel3 Wheel)

(wheel4 Wheel)

(wheel5 Object)

(wheel6 Object)

(wheel5 Wheel)

(wheel6 Wheel)

(preconds

(intact wheel2) (intact wheel4) (intact wheel6)

(in wheel2 boot) (in wheel4 boot) (in wheel6 boot)

(on wheel1 hub1) (on wheel3 hub2) (on wheel5 hub3)

(on-ground hub1) (on-ground hub2) (on-ground hub3)

(tight nuts1 hub1) (tight nuts2 hub2) (tight nuts3 hub3)

(not-inflated wheel2) (not-inflated wheel4) (not-inflated wheel6)

(fastened hub1) (fastened hub2) (fastened hub3)

(in jack boot) (in pump boot)

(in wrench boot)

(unlocked boot)

(closed boot))

(effects

 (on wheel2 hub1) (on wheel4 hub2) (on wheel6 hub3)

 (in wheel1 boot) (in wheel3 boot) (in wheel5 boot)

 (inflated wheel2) (inflated wheel4) (inflated wheel6)

 (tight nuts1 hub1) (tight nuts2 hub2) (tight nuts3 hub3)

 (in wrench boot)

 (in jack boot) (in pump boot)

 (closed boot))

Graphplan cannot solve this in any reasonable amount of time; after 5 minutes, it reaches 17 steps, and still hasn’t finished. If the number of tires is reduced to 2, then Graphplan can solve the problem in a few seconds.

UCPOP already can’t solve a single tire change problem, so there is no point in trying with 3.

This illustrates that there are potentially orders of magnitude of difference in solution speed between these solvers.

Problem 4 – Cleaning Up Rooms

Consider a planning problem domain involving 3 or more rooms, 1 or more robots, and 1 or more objects. Each object has a room that it is currently in, and a room that it should be in. Each robot can carry at most one object at a time. The problem is to have the robots carry all the objects to their correct room.

There is an additional constraint that the rooms are arranged in a circular fashion. Thus, from any room, it is possible to go to the neighboring room on the left or right. It is not possible to go from any room directly to any other. For example, if there are 3 rooms (A, B, and C), they are arranged in the following way:

 A’s right neighbor is B, and left neighbor is C

 B’s right neighbor is C, and left neighbor is A

 C’s right neighbor is A, and left neighbor is B

This problem is a variation of the classic “Travelling Salesman Problem” (TSP).

A. Formulate this problem for 1 robot, 6 rooms, and 12 objects. Solve using the Graphplan software (provide your formulation, and the solution output by Graphplan).

Graphplan, used in a straightforward way, is not good at solving this problem. Unless the constraint that a robot can carry one object at a time is relaxed, and unless the objects are arranged in a particularly easy initial configuration (clockwise next to their goal rooms), Graphplan will take forever to solve this. It takes about 30 min. to solve this if the number of objects is reduced to 6.

One way to use Graphplan is to break the problem up into several partitions. Take 4 or 5 objects at a time, clean them up, and then move on to the next set of objects. This is perfectly reasonable, but it results in somewhat sub-optimal plans.

FF solves this problem in a fraction of a second.

The domain formulation is as follows.

(define (domain cleanup)

 (:types obj - object

 Robot Room ThingToCleanUp - object)

(:predicates (thing-in ?thing ?room)

 (robot-in ?rob ?rm)

 (holding ?rob ?thing)

 (not-holding ?rob))

(:action move-cw-to-B

:parameters (?rob - Robot)

:precondition (robot-in ?rob A)

:effect (and (robot-in ?rob B)

 (not (robot-in ?rob A))))

(:action move-cw-to-C

:parameters (?rob - Robot)

:precondition (robot-in ?rob B)

:effect (and (robot-in ?rob C)

 (not (robot-in ?rob B))))

(:action move-cw-to-D

:parameters (?rob - Robot)

:precondition (robot-in ?rob C)

:effect (and (robot-in ?rob D)

 (not (robot-in ?rob C))))

(:action move-cw-to-E

:parameters (?rob - Robot)

:precondition (robot-in ?rob D)

:effect (and (robot-in ?rob E)

 (not (robot-in ?rob D))))

(:action move-cw-to-F

:parameters (?rob - Robot)

:precondition (robot-in ?rob E)

:effect (and (robot-in ?rob F)

 (not (robot-in ?rob E))))

(:action move-cw-to-A

:parameters (?rob - Robot)

:precondition (robot-in ?rob F)

:effect (and (robot-in ?rob A)

 (not (robot-in ?rob F))))

(:action move-ccw-to-F

:parameters (?rob - Robot)

:precondition (robot-in ?rob A)

:effect (and (robot-in ?rob F)

 (not (robot-in ?rob A))))

(:action move-ccw-to-E

:parameters (?rob - Robot)

:precondition (robot-in ?rob F)

:effect (and (robot-in ?rob E)

 (not (robot-in ?rob F))))

(:action move-ccw-to-D

:parameters (?rob - Robot)

:precondition (robot-in ?rob E)

:effect (and (robot-in ?rob D)

 (not (robot-in ?rob E))))

(:action move-ccw-to-C

:parameters (?rob - Robot)

:precondition (robot-in ?rob D)

:effect (and (robot-in ?rob C)

 (not (robot-in ?rob D))))

(:action move-ccw-to-B

:parameters (?rob - Robot)

:precondition (robot-in ?rob C)

:effect (and (robot-in ?rob B)

 (not (robot-in ?rob C))))

(:action move-ccw-to-A

:parameters (?rob - Robot)

:precondition (robot-in ?rob B)

:effect (and (robot-in ?rob A)

 (not (robot-in ?rob B))))

(:action pickup

:parameters (?rob - Robot ?rm - Room ?thing - ThingToCleanUp)

:precondition (and (robot-in ?rob ?rm) (thing-in ?thing ?rm) (not-holding ?rob))

:effect (and (holding ?rob ?thing)

 (not (thing-in ?thing ?rm)) (not (not-holding ?rob))))

(:action putdown

:parameters (?rob - Robot ?rm - Room ?thing - ThingToCleanUp)

:precondition (and (robot-in ?rob ?rm) (holding ?rob ?thing))

:effect (and (thing-in ?thing ?rm) (not-holding ?rob)

 (not (holding ?rob ?thing)))))

The facts formulation is as follows.

(define (problem cleanup1)

(:domain cleanup)

(:objects

R1 - Robot

A B C D E F - Room

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 - ThingToCleanUp

)

(:init

(thing-in T1 A)

(thing-in T2 B)

(thing-in T3 C)

(thing-in T4 D)

(thing-in T5 E)

(thing-in T6 F)

(thing-in T7 A)

(thing-in T8 B)

(thing-in T9 C)

(thing-in T10 D)

(thing-in T11 E)

(thing-in T12 F)

(robot-in R1 A)

(not-holding R1)

)

(:goal

(and

(thing-in T1 B)

(thing-in T2 C)

(thing-in T3 D)

(thing-in T4 E)

(thing-in T5 F)

(thing-in T6 A)

(thing-in T7 F)

(thing-in T8 D)

(thing-in T9 E)

(thing-in T10 A)

(thing-in T11 C)

(thing-in T12 B)

)

)

)

The solution output from FF is as follows.

step

 0: PICKUP R1 A T1

 1: MOVE-CW-TO-B R1

 2: PUTDOWN R1 B T1

 3: PICKUP R1 B T2

 4: MOVE-CW-TO-C R1

 5: PUTDOWN R1 C T2

 6: PICKUP R1 C T3

 7: MOVE-CW-TO-D R1

 8: PUTDOWN R1 D T3

 9: PICKUP R1 D T4

 10: MOVE-CW-TO-E R1

 11: PUTDOWN R1 E T4

 12: PICKUP R1 E T5

 13: MOVE-CW-TO-F R1

 14: PUTDOWN R1 F T5

 15: PICKUP R1 F T6

 16: MOVE-CW-TO-A R1

 17: PUTDOWN R1 A T6

 18: PICKUP R1 A T7

 19: MOVE-CCW-TO-F R1

 20: PUTDOWN R1 F T7

 21: MOVE-CCW-TO-E R1

 22: PICKUP R1 E T11

 23: MOVE-CCW-TO-D R1

 24: MOVE-CCW-TO-C R1

 25: PUTDOWN R1 C T11

 26: PICKUP R1 C T9

 27: MOVE-CW-TO-D R1

 28: MOVE-CW-TO-E R1

 29: PUTDOWN R1 E T9

 30: MOVE-CW-TO-F R1

 31: PICKUP R1 F T12

 32: MOVE-CW-TO-A R1

 33: MOVE-CW-TO-B R1

 34: PUTDOWN R1 B T12

 35: PICKUP R1 B T8

 36: MOVE-CW-TO-C R1

 37: MOVE-CW-TO-D R1

 38: PUTDOWN R1 D T8

 39: PICKUP R1 D T10

 40: MOVE-CCW-TO-C R1

 41: MOVE-CCW-TO-B R1

 42: MOVE-CCW-TO-A R1

 43: PUTDOWN R1 A T10

The FF solution isn’t always optimal, but it is pretty good. Intuitively, this problem is easy to solve, as long as a slightly sub-optimal solution is tolerable. This is often the case with “real world” combinatoric optimization problems. For example, large scheduling problem solvers attempt to find “good” rather than optimal solutions.

One reason that FF is faster than Graphplan is that FF uses a forward search, whereas Graphplan uses a backward search. This problem has a large number of propositions in the goal state. This can cause backward search to take a long time.

B. Increase the number of rooms and solve using the Graphplan software (provide your formulation, and the solution output by Graphplan). Explain how problem complexity changes in terms of search space and solution.

A domain formulation that increases the number of rooms to 8 is as follows.

(define (domain cleanup)

 (:types obj - object

 Robot Room ThingToCleanUp - object)

(:predicates (thing-in ?thing ?room)

 (robot-in ?rob ?rm)

 (holding ?rob ?thing)

 (not-holding ?rob))

(:action move-cw-to-B

:parameters (?rob - Robot)

:precondition (robot-in ?rob A)

:effect (and (robot-in ?rob B)

 (not (robot-in ?rob A))))

(:action move-cw-to-C

:parameters (?rob - Robot)

:precondition (robot-in ?rob B)

:effect (and (robot-in ?rob C)

 (not (robot-in ?rob B))))

(:action move-cw-to-D

:parameters (?rob - Robot)

:precondition (robot-in ?rob C)

:effect (and (robot-in ?rob D)

 (not (robot-in ?rob C))))

(:action move-cw-to-E

:parameters (?rob - Robot)

:precondition (robot-in ?rob D)

:effect (and (robot-in ?rob E)

 (not (robot-in ?rob D))))

(:action move-cw-to-F

:parameters (?rob - Robot)

:precondition (robot-in ?rob E)

:effect (and (robot-in ?rob F)

 (not (robot-in ?rob E))))

(:action move-cw-to-G

:parameters (?rob - Robot)

:precondition (robot-in ?rob F)

:effect (and (robot-in ?rob G)

 (not (robot-in ?rob F))))

(:action move-cw-to-H

:parameters (?rob - Robot)

:precondition (robot-in ?rob G)

:effect (and (robot-in ?rob H)

 (not (robot-in ?rob G))))

(:action move-cw-to-A

:parameters (?rob - Robot)

:precondition (robot-in ?rob H)

:effect (and (robot-in ?rob A)

 (not (robot-in ?rob H))))

(:action move-ccw-to-H

:parameters (?rob - Robot)

:precondition (robot-in ?rob A)

:effect (and (robot-in ?rob H)

 (not (robot-in ?rob A))))

(:action move-ccw-to-G

:parameters (?rob - Robot)

:precondition (robot-in ?rob H)

:effect (and (robot-in ?rob G)

 (not (robot-in ?rob H))))

(:action move-ccw-to-F

:parameters (?rob - Robot)

:precondition (robot-in ?rob G)

:effect (and (robot-in ?rob F)

 (not (robot-in ?rob G))))

(:action move-ccw-to-E

:parameters (?rob - Robot)

:precondition (robot-in ?rob F)

:effect (and (robot-in ?rob E)

 (not (robot-in ?rob F))))

(:action move-ccw-to-D

:parameters (?rob - Robot)

:precondition (robot-in ?rob E)

:effect (and (robot-in ?rob D)

 (not (robot-in ?rob E))))

(:action move-ccw-to-C

:parameters (?rob - Robot)

:precondition (robot-in ?rob D)

:effect (and (robot-in ?rob C)

 (not (robot-in ?rob D))))

(:action move-ccw-to-B

:parameters (?rob - Robot)

:precondition (robot-in ?rob C)

:effect (and (robot-in ?rob B)

 (not (robot-in ?rob C))))

(:action move-ccw-to-A

:parameters (?rob - Robot)

:precondition (robot-in ?rob B)

:effect (and (robot-in ?rob A)

 (not (robot-in ?rob B))))

(:action pickup

:parameters (?rob - Robot ?rm - Room ?thing - ThingToCleanUp)

:precondition (and (robot-in ?rob ?rm) (thing-in ?thing ?rm) (not-holding ?rob))

:effect (and (holding ?rob ?thing)

 (not (thing-in ?thing ?rm)) (not (not-holding ?rob))))

(:action putdown

:parameters (?rob - Robot ?rm - Room ?thing - ThingToCleanUp)

:precondition (and (robot-in ?rob ?rm) (holding ?rob ?thing))

:effect (and (thing-in ?thing ?rm) (not-holding ?rob)

 (not (holding ?rob ?thing)))))

A facts formulation that utilizes this is as follows:

(define (problem cleanup1)

(:domain cleanup)

(:objects

R1 - Robot

A B C D E F G H - Room

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 - ThingToCleanUp

)

(:init

(thing-in T1 A)

(thing-in T2 B)

(thing-in T3 C)

(thing-in T4 D)

(thing-in T5 E)

(thing-in T6 F)

(thing-in T7 G)

(thing-in T8 H)

(thing-in T9 C)

(thing-in T10 D)

(thing-in T11 E)

(thing-in T12 F)

(robot-in R1 A)

(not-holding R1)

)

(:goal

(and

(thing-in T1 B)

(thing-in T2 C)

(thing-in T3 D)

(thing-in T4 H)

(thing-in T5 F)

(thing-in T6 A)

(thing-in T7 F)

(thing-in T8 D)

(thing-in T9 E)

(thing-in T10 A)

(thing-in T11 G)

(thing-in T12 H)

)

)

)

The solution output from FF is as follows.

step

 0: PICKUP R1 A T1

 1: MOVE-CW-TO-B R1

 2: PUTDOWN R1 B T1

 3: PICKUP R1 B T2

 4: MOVE-CW-TO-C R1

 5: PUTDOWN R1 C T2

 6: PICKUP R1 C T3

 7: MOVE-CW-TO-D R1

 8: PUTDOWN R1 D T3

 9: MOVE-CW-TO-E R1

 10: MOVE-CW-TO-F R1

 11: MOVE-CW-TO-G R1

 12: PICKUP R1 G T7

 13: MOVE-CCW-TO-F R1

 14: PUTDOWN R1 F T7

 15: PICKUP R1 F T12

 16: MOVE-CW-TO-G R1

 17: MOVE-CW-TO-H R1

 18: PUTDOWN R1 H T12

 19: MOVE-CCW-TO-G R1

 20: MOVE-CCW-TO-F R1

 21: MOVE-CCW-TO-E R1

 22: PICKUP R1 E T5

 23: MOVE-CW-TO-F R1

 24: PUTDOWN R1 F T5

 25: MOVE-CCW-TO-E R1

 26: PICKUP R1 E T11

 27: MOVE-CW-TO-F R1

 28: MOVE-CW-TO-G R1

 29: PUTDOWN R1 G T11

 30: MOVE-CCW-TO-F R1

 31: PICKUP R1 F T6

 32: MOVE-CCW-TO-E R1

 33: MOVE-CCW-TO-D R1

 34: MOVE-CCW-TO-C R1

 35: PUTDOWN R1 C T6

 36: PICKUP R1 C T9

 37: MOVE-CW-TO-D R1

 38: MOVE-CW-TO-E R1

 39: PUTDOWN R1 E T9

 40: MOVE-CCW-TO-D R1

 41: PICKUP R1 D T10

 42: MOVE-CCW-TO-C R1

 43: MOVE-CCW-TO-B R1

 44: MOVE-CCW-TO-A R1

 45: PUTDOWN R1 A T10

 46: MOVE-CW-TO-B R1

 47: MOVE-CW-TO-C R1

 48: PICKUP R1 C T6

 49: MOVE-CCW-TO-B R1

 50: MOVE-CCW-TO-A R1

 51: PUTDOWN R1 A T6

 52: MOVE-CCW-TO-H R1

 53: PICKUP R1 H T8

 54: MOVE-CCW-TO-G R1

 55: MOVE-CCW-TO-F R1

 56: MOVE-CCW-TO-E R1

 57: MOVE-CCW-TO-D R1

 58: PUTDOWN R1 D T8

 59: PICKUP R1 D T4

 60: MOVE-CCW-TO-C R1

 61: MOVE-CCW-TO-B R1

 62: MOVE-CCW-TO-A R1

 63: MOVE-CCW-TO-H R1

 64: PUTDOWN R1 H T4

The search space increases in that there are more rooms to put things in, so the robot may have to travel further (taking more steps) to move things. This is reflected in the solution which has more steps than the solution for part A. The ratio of moves to pickup/putdown steps is higher than the solution for part A, indicating that this problem is harder, and also suggesting that this may not be the most optimal solution.

C. Increase the number of objects and solve using the Graphplan software (provide your formulation, and the solution output by Graphplan). Explain how problem complexity changes in terms of search space and solution.

A facts formulation that adds two objects to clean up is as follows.

(define (problem cleanup1)

(:domain cleanup)

(:objects

R1 - Robot

A B C D E F G H - Room

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 - ThingToCleanUp

)

(:init

(thing-in T1 A)

(thing-in T2 B)

(thing-in T3 C)

(thing-in T4 D)

(thing-in T5 E)

(thing-in T6 F)

(thing-in T7 G)

(thing-in T8 H)

(thing-in T9 C)

(thing-in T10 D)

(thing-in T11 E)

(thing-in T12 F)

(thing-in T13 G)

(thing-in T14 H)

(robot-in R1 A)

(not-holding R1)

)

(:goal

(and

(thing-in T1 B)

(thing-in T2 C)

(thing-in T3 D)

(thing-in T4 H)

(thing-in T5 F)

(thing-in T6 A)

(thing-in T7 F)

(thing-in T8 D)

(thing-in T9 E)

(thing-in T10 A)

(thing-in T11 G)

(thing-in T12 H)

(thing-in T13 C)

(thing-in T14 F)

)

)

)

The resulting solution output from FF is as follows.

step 0: PICKUP R1 A T1

 1: MOVE-CW-TO-B R1

 2: PUTDOWN R1 B T1

 3: PICKUP R1 B T2

 4: MOVE-CW-TO-C R1

 5: PUTDOWN R1 C T2

 6: PICKUP R1 C T3

 7: MOVE-CW-TO-D R1

 8: PUTDOWN R1 D T3

 9: MOVE-CW-TO-E R1

 10: MOVE-CW-TO-F R1

 11: MOVE-CW-TO-G R1

 12: PICKUP R1 G T7

 13: MOVE-CCW-TO-F R1

 14: PUTDOWN R1 F T7

 15: PICKUP R1 F T12

 16: MOVE-CW-TO-G R1

 17: MOVE-CW-TO-H R1

 18: PUTDOWN R1 H T12

 19: PICKUP R1 H T14

 20: MOVE-CCW-TO-G R1

 21: MOVE-CCW-TO-F R1

 22: PUTDOWN R1 F T14

 23: MOVE-CCW-TO-E R1

 24: PICKUP R1 E T5

 25: MOVE-CW-TO-F R1

 26: PUTDOWN R1 F T5

 27: MOVE-CCW-TO-E R1

 28: PICKUP R1 E T11

 29: MOVE-CW-TO-F R1

 30: MOVE-CW-TO-G R1

 31: PUTDOWN R1 G T11

 32: PICKUP R1 G T13

 33: MOVE-CCW-TO-F R1

 34: MOVE-CCW-TO-E R1

 35: MOVE-CCW-TO-D R1

 36: MOVE-CCW-TO-C R1

 37: PUTDOWN R1 C T13

 38: PICKUP R1 C T9

 39: MOVE-CCW-TO-B R1

 40: MOVE-CCW-TO-A R1

 41: MOVE-CCW-TO-H R1

 42: MOVE-CCW-TO-G R1

 43: MOVE-CCW-TO-F R1

 44: MOVE-CCW-TO-E R1

 45: PUTDOWN R1 E T9

 46: MOVE-CW-TO-F R1

 47: PICKUP R1 F T6

 48: MOVE-CW-TO-G R1

 49: MOVE-CW-TO-H R1

 50: MOVE-CW-TO-A R1

 51: PUTDOWN R1 A T6

 52: MOVE-CCW-TO-H R1

 53: PICKUP R1 H T8

 54: MOVE-CW-TO-A R1

 55: MOVE-CW-TO-B R1

 56: MOVE-CW-TO-C R1

 57: MOVE-CW-TO-D R1

 58: PUTDOWN R1 D T8

 59: PICKUP R1 D T4

 60: MOVE-CCW-TO-C R1

 61: MOVE-CCW-TO-B R1

 62: MOVE-CCW-TO-A R1

 63: MOVE-CCW-TO-H R1

 64: PUTDOWN R1 H T4

 65: MOVE-CW-TO-A R1

 66: MOVE-CW-TO-B R1

 67: MOVE-CW-TO-C R1

 68: MOVE-CW-TO-D R1

 69: PICKUP R1 D T10

 70: MOVE-CCW-TO-C R1

 71: MOVE-CCW-TO-B R1

 72: MOVE-CCW-TO-A R1

 73: PUTDOWN R1 A T10

The search space increases simply because there is more work to do. This is reflected in the solution which has more steps than the solution for part B.

D. Increase the number of robots and solve using the Graphplan software (provide your formulation, and the solution output by Graphplan). Explain how problem complexity changes in terms of search space and solution.

Speculate why use of more than one robot may allow for a better plan even though these problem formulations and planning algorithms do not explicitly provide for cooperating, concurrent agents (resources).

A facts formulation that adds another robot is as follows.

(define (problem cleanup1)

(:domain cleanup)

(:objects

R1 R2 - Robot

A B C D E F G H - Room

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 - ThingToCleanUp

)

(:init

(thing-in T1 A)

(thing-in T2 B)

(thing-in T3 C)

(thing-in T4 D)

(thing-in T5 E)

(thing-in T6 F)

(thing-in T7 G)

(thing-in T8 H)

(thing-in T9 C)

(thing-in T10 D)

(thing-in T11 E)

(thing-in T12 F)

(thing-in T13 G)

(thing-in T14 H)

(robot-in R1 A)

(not-holding R1)

(robot-in R2 E)

(not-holding R2)

)

(:goal

(and

(thing-in T1 B)

(thing-in T2 C)

(thing-in T3 D)

(thing-in T4 H)

(thing-in T5 F)

(thing-in T6 A)

(thing-in T7 F)

(thing-in T8 D)

(thing-in T9 E)

(thing-in T10 A)

(thing-in T11 G)

(thing-in T12 H)

(thing-in T13 C)

(thing-in T14 F)

)

)

)

The resulting solution output from FF is as follows.

step 0: PICKUP R1 A T1

 1: PICKUP R2 E T5

 2: MOVE-CW-TO-F R2

 3: PUTDOWN R2 F T5

 4: PICKUP R2 F T6

 5: MOVE-CW-TO-B R1

 6: PUTDOWN R1 B T1

 7: PICKUP R1 B T2

 8: MOVE-CCW-TO-A R1

 9: MOVE-CW-TO-G R2

 10: MOVE-CW-TO-H R2

 11: MOVE-CW-TO-A R2

 12: PUTDOWN R2 A T6

 13: MOVE-CW-TO-B R1

 14: MOVE-CW-TO-B R2

 15: MOVE-CW-TO-C R1

 16: MOVE-CW-TO-C R2

 17: PUTDOWN R1 C T2

 18: MOVE-CW-TO-D R2

 19: PICKUP R1 C T3

 20: MOVE-CW-TO-D R1

 21: PUTDOWN R1 D T3

 22: MOVE-CW-TO-E R2

 23: MOVE-CCW-TO-C R1

 24: MOVE-CCW-TO-B R1

 25: MOVE-CCW-TO-A R1

 26: MOVE-CW-TO-F R2

 27: MOVE-CW-TO-G R2

 28: PICKUP R2 G T7

 29: MOVE-CCW-TO-F R2

 30: PUTDOWN R2 F T7

 31: MOVE-CCW-TO-E R2

 32: PICKUP R2 E T11

 33: MOVE-CW-TO-F R2

 34: MOVE-CW-TO-G R2

 35: PUTDOWN R2 G T11

 36: MOVE-CW-TO-H R2

 37: PICKUP R2 H T14

 38: MOVE-CCW-TO-G R2

 39: MOVE-CCW-TO-F R2

 40: PUTDOWN R2 F T14

 41: PICKUP R2 F T12

 42: MOVE-CW-TO-G R2

 43: MOVE-CCW-TO-H R1

 44: MOVE-CW-TO-H R2

 45: PUTDOWN R2 H T12

 46: MOVE-CW-TO-A R2

 47: MOVE-CW-TO-B R2

 48: MOVE-CCW-TO-G R1

 49: PICKUP R1 G T13

 50: MOVE-CW-TO-H R1

 51: MOVE-CW-TO-A R1

 52: MOVE-CW-TO-B R1

 53: MOVE-CW-TO-C R2

 54: MOVE-CW-TO-C R1

 55: PUTDOWN R1 C T13

 56: PICKUP R2 C T9

 57: MOVE-CW-TO-D R2

 58: MOVE-CW-TO-E R2

 59: PUTDOWN R2 E T9

 60: MOVE-CCW-TO-D R2

 61: MOVE-CW-TO-D R1

 62: PICKUP R2 D T4

 63: MOVE-CCW-TO-C R2

 64: MOVE-CCW-TO-B R2

 65: MOVE-CCW-TO-A R2

 66: MOVE-CCW-TO-C R1

 67: MOVE-CCW-TO-B R1

 68: MOVE-CCW-TO-H R2

 69: PUTDOWN R2 H T4

 70: MOVE-CCW-TO-A R1

 71: MOVE-CCW-TO-H R1

 72: PICKUP R2 H T8

 73: MOVE-CW-TO-A R2

 74: MOVE-CW-TO-B R2

 75: MOVE-CW-TO-C R2

 76: MOVE-CW-TO-D R2

 77: PUTDOWN R2 D T8

 78: PICKUP R2 D T10

 79: MOVE-CCW-TO-C R2

 80: MOVE-CCW-TO-B R2

 81: MOVE-CCW-TO-A R2

 82: PUTDOWN R2 A T10

Problem complexity increases because there are now more resources to accomplish the required tasks, resulting in more action options, and a larger search space.

Ideally, having two robots would allow each to focus on separate areas, and thus reduce the number of overall movement steps. Also, theoretically, the robots could cooperate; one could drop an object at an intermediate point where it could be picked up by the other and brought to its final destination. This would only make sense if the cost of mover were dramatically higher than the cost of picking things up and putting them down.

Unlike Graphplan, FF does not allow for parallel actions in its plans; it serializes everything. Therefore, care must be taken in analyzing its output. At first glance, the output for part D, which has 82 total steps, seems less efficient than the output for part C, which has 73. Note, however, that in part D, the robots can work independently (there are no constraints that prevent them from being in the same room at the same time). The total number of steps for robot R1 is 26, and the number for R2 is therefore 56. This is a bit lop-sided, but it makes for a total of 56 steps when the robots work in parallel. This is less than the 73 steps for part D, so the plan is making use of the additional resource.

It is also useful to compare the plans for parts c and d in terms of ratio of pickup/putdown steps to overall number of steps. Each plan has 28 pickup/putdown steps. This is not surprising considering the fact that there are 14 objects to be moved. It indicates that the robots are not cooperating by handing things off as described above (probably because the cost of an additional pickup/putdown is too high relative to the cost of moving). This leaves 59 movement steps for part c, and 68 for part d. Thus, unfortunately, the plan for part d has actually resulted in more overall movement rather than less, indicating that there has been some loss of optimality. This is not surprising considering that the search space has become more complicated. This sort of trade-off (efficiency of resource utilization vs. minimization of completion time) is common in many problems.

_1096801423.vsd
text�

Level 1�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

(fo v4)�

(fo v5)�

(fo v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(ff v4)�

(ff v5)�

(ff v6)�

Level 2�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

(fo v4)�

(fo v5)�

(fo v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(ff v4)�

(ff v5)�

(ff v6)�

(on rocket)�

(fc v2)�

(fc v3)�

(afft v6 v3)�

�

�

�

(fct2 v6 v3 v5)�

�

�

(fct1 v6 v3 v5)�

�

�

(affb v6 v5)�

�

frm�

�

�

�

�

Fo1, afnf, from previous page, are omitted here for the sake of brevity.

�

(afft v5 v2), (afft v4 v1) similar�

(fct2 v5 v2 v4) similar�

(fct1 v5 v2 v4) similar�

(affb v5 v4) similar�

_1096801487.vsd
text�

Level 3�

(off rocket)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(on rocket)�

(sorm)�

(ff v6)�

Level 4�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(on rocket)�

(ff v6)�

For the sake of brevity, not all facts are shown here (see previous pages for the rest of the facts). Similarly, actions on previous pages exist here identically, but are not shown. Level 4 adds no new facts.

�

_1096804159.vsd
text�

(fo1 v6 v3)�

(frm)�

(fo v6)�

(fct2 v6 v3 v5)�

(fo v6)�

�

�

(fo1 v5 v2)�

(fo1 v4 v1)�

�

(affb v5 v4)�

(fo v5)�

(ff v4)�

�

�

(affb v6 v5)�

(fo v6)�

(ff v5)�

�

�

(amfot)�

�

(on rm)�

(sorm)�

(fnf v6)�

(on rm)�

�

�

(amsot)�

(one tmf)�

(off rm)�

�

�

(frm)�

(off rm)�

�

(ff v6)�

�

(amftt)�

(on rm)�

(one tmf)�

(one tms)�

�

�

�

(two tmf)�

_1096801552.vsd
text�

Level 4�

(zero times-fired)�

(one times-fired)�

(zero times-fired)�

(on rocket)�

(one times-fired)�

(off rocket)�

Level 5�

(one times-stopped)�

(amsot)�

(on rocket)�

(off rocket)�

As before, for the sake of brevity, not all facts and actions are shown here. Level 5 adds one new fact (one times-stopped).

�

Level 6 adds the fact two times fired.�

_1096801453.vsd
text�

Level 2�

(amfot)�

(afni v3 v5)�

(zero times-fired)�

(ff v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

For the sake of brevity, not all facts are shown here (see previous pages for the rest of the facts). Similarly, actions on previous pages exist here identically, but are not shown. Level 3 adds one new fact (one times-fired).�

(on rocket)�

(fc v2)�

(fc v3)�

Level 3�

(afni v2 v4) similar�

(zero times-fired)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(on rocket)�

(fc v2)�

(fc v3)�

(one times-fired)�

_1095526794.unknown

_1096701859.vsd
text�

Level 1�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

(fo v4)�

(fo v5)�

(fo v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(ff v4)�

(ff v5)�

(ff v6)�

Level 2�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

(fo v4)�

(fo v5)�

(fo v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(ff v4)�

(ff v5)�

(ff v6)�

(on rocket)�

(fc v2)�

(fc v3)�

(afft v6 v3)�

�

�

�

(fct2 v6 v3 v5)�

�

�

(fct1 v6 v3 v5)�

�

�

(affb v6 v5)�

�

frm�

�

�

�

�

Fo1, afnf, from previous page, are omitted here for the sake of brevity.

Can�t do fo2, fo3, afni, sorm, amfot, amsot, amftt, amstt, due to mutex constraints.�

(afft v5 v2), (afft v4 v1) similar�

(fct2 v5 v2 v4) similar�

(fct1 v5 v2 v4) similar�

(affb v5 v4) similar�

_1096801389.vsd
text�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

Level 1�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

(fo v4)�

(fo v5)�

(fo v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(ff v4)�

(ff v5)�

(ff v6)�

(fo1 v4 v1)�

(afnf v4)�

_1096700168.vsd
text�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

Level 1�

(no v1)�

(no v2)�

(no v3)�

(nc v4)�

(nc v5)�

(nc v6)�

(off rocket)�

(zero times-fired)�

(fo v4)�

(fo v5)�

(fo v6)�

(fnf v4)�

(fnf v5)�

(fnf v6)�

(ff v4)�

(ff v5)�

(ff v6)�

(fo1 v4 v1)�

(afnf v4)�

_1095527080.unknown

_1095526322.vsd
text�

State 1

State 0
- (nc v4)
+ (fo v4) (ff v4)�

State 2

State 0
- (nc v5)
+ (fo v5) (ff v5)�

State 3

State 0
- (nc v6)
+ (fo v6) (ff v6)�

State 4

State 0
+ (fnf v4)�

State 5

State 0
+ (fnf v5)�

State 6

State 0
+ (fnf v6)�

(fo1 v5 v2)�

(fo1 v6 v3)�

(afnf v5)�

(afnf v6)�

(afft v4 v1)�

(fo1 v4 v1)�

(fo1 v6 v3)�

(afnf v4)�

(afnf v6)�

(afft v5 v2)�

(fo1 v5 v2)�

(fo1 v6 v3)�

(afnf v5)�

(fo1 v4 v1)�

(fo1 v5 v2)�

(afnf v5)�

(afnf v6)�

(afft v6 v3)�

(afnf v6)�

(fo1 v4 v1)�

(fo1 v5 v2)�

(frm)�

(fo1 v6 v3)�

(afnf v4)�

(afnf v6)�

(fo1 v4 v1)�

(fo1 v5 v2)�

(fo1 v6 v3)�

(afnf v4)�

(afnf v5)�

(fo1 v4 v1)�

_1095526686.unknown

_1095526262.vsd
text�

State 0

(no v1) (no v2) (no v3)
(nc v4) (nc v5) (nc v6)
(off rocket)
(zero times-fired)�

State 1

State 0
- (nc v4)
+ (fo v4) (ff v4)�

�

(fo1 v4 v1)�

State 2

State 0
- (nc v5)
+ (fo v5) (ff v5)�

�

(fo1 v5 v2)�

State 3

State 0
- (nc v6)
+ (fo v6) (ff v6)�

�

(fo1 v6 v3)�

State 4

State 0
+ (fnf v4)�

�

(afnf v4)�

State 5

State 0
+ (fnf v5)�

State 6

State 0
+ (fnf v6)�

�

�

(afnf v5)�

(afnf v6)�

