Massachusetts Institute of Technology

16.412J/6.834J Intelligent Embedded Systems

Problem Set #2

Due: in class Wed, 10/2/02

Background

The purpose of this problem set is to develop a grounded understanding of planning problems and their solution. This includes understanding of how such problems are formulated, of the variety of algorithms that can be used for solution, and of the limits of these formulations and algorithms.

Problem 1 – Simple Planning Problem

Consider the following valve network.

[image: image1.wmf]Fuel

Rocket

Motor

V1

V2

V3

V4

V5

V6

NO

NO

NO

NC

NC

NC

Valves V1 – V6 are pyro valves. Pyro valves are initially in one particular state (open or closed). An explosive bolt can be fired that switches a pyro valve to its other state. Thus, an important disadvantage of a pyro valve (with respect to a typical electrically activated on-off valve) is that a pyro valve can switch states only once. The advantage of using a pyro valve is that it is extremely reliable. It will stay in its initial state until it is fired. When it is fired, it is guaranteed to switch to the opposite state where it will remain.

In the above diagram, valves V1 – V3 are initially open (indicated by NO for normally open). Firing these closes them. Valves V4 – V6 are initially closed (NC for normally closed). Firing these opens them.

Now, consider the following STRIPS formulation of facts and operators for this problem (refer to Ch. 11 of the Russell and Norvig text for a description of the STRIPS language).

Operators:

(operator

 fire-open-1

 (params (<vout> Valve) (<vtop> Valve))

 (preconds

 (top-input-to <vtop> <vout>)

 (normally-closed <vout>) (normally-open <vtop>))

 (effects

 (del normally-closed <vout>) (fired-open <vout>)

 (del fuel-not-flowing <vout>) (fuel-flowing <vout>)))

(operator

 fire-open-2

 (params (<vout> Valve) (<vtop> Valve) (<vbottom> Valve))

 (preconds

 (top-input-to <vtop> <vout>) (bottom-input-to <vbottom> <vout>)

 (normally-closed <vout>) (fired-closed <vtop>) (fuel-flowing <vbottom>))

 (effects

 (del normally-closed <vout>) (fired-open <vout>)

 (del fuel-not-flowing <vout>) (fuel-flowing <vout>)))

(operator

 fire-open-3

 (params (<vout> Valve) (<vtop> Valve) (<vbottom> Valve))

 (preconds

 (top-input-to <vtop> <vout>) (bottom-input-to <vbottom> <vout>)

 (normally-closed <vout>) (fired-closed <vtop>) (fuel-not-flowing <vbottom>))

 (effects

 (del normally-closed <vout>) (fired-open <vout>)

 (del fuel-flowing <vout>) (fuel-not-flowing <vout>)))

(operator

 fire-close-top-1

 (params (<vout> Valve) (<vtop> Valve) (<vbottom> Valve))

 (preconds

 (top-input-to <vtop> <vout>) (bottom-input-to <vbottom> <vout>)

 (normally-open <vtop>) (fired-open <vout>) (fuel-flowing <vbottom>))

 (effects

 (del normally-open <vtop>) (fired-closed <vtop>)

 (del fuel-not-flowing <vout>) (fuel-flowing <vout>)))

(operator

 fire-close-top-2

 (params (<vout> Valve) (<vtop> Valve) (<vbottom> Valve))

 (preconds

 (top-input-to <vtop> <vout>) (bottom-input-to <vbottom> <vout>)

 (normally-open <vtop>) (fired-open <vout>) (fuel-not-flowing <vbottom>))

 (effects

 (del normally-open <vtop>) (fired-closed <vtop>)

 (del fuel-flowing <vout>) (fuel-not-flowing <vout>)))

(operator

 assert-fuel-flowing-top

 (params (<vout> Valve) (<vtop> Valve))

 (preconds

 (top-input-to <vtop> <vout>) (fired-open <vout>) (normally-open <vtop>))

 (effects

 (del fuel-not-flowing <vout>) (fuel-flowing <vout>)))

(operator

 assert-fuel-flowing-bottom

 (params (<vout> Valve) (<vbottom> Valve))

 (preconds

 (bottom-input-to <vbottom> <vout>) (fired-open <vout>) (fuel-flowing <vbottom>))

 (effects

 (del fuel-not-flowing <vout>) (fuel-flowing <vout>)))

(operator

 assert-fuel-not-flowing

 (params (<vout> Valve))

 (preconds

 (normally-closed <vout>))

 (effects

 (del fuel-flowing <vout>) (fuel-not-flowing <vout>)))

(operator

 assert-fuel-no-input

 (params (<vout> Valve) (<vtop> Valve) (<vbottom> Valve))

 (preconds

 (top-input-to <vtop> <vout>) (bottom-input-to <vbottom> <vout>)

 (fired-closed <vtop>) (fuel-not-flowing <vbottom>))

 (effects

 (del fuel-flowing <vout>) (fuel-not-flowing <vout>)))

(operator

 fire-rocket-motor

 (params)

 (preconds

 (off rocket-motor) (fuel-flowing v6))

 (effects

 (del off rocket-motor) (on rocket-motor)))

(operator

 shut-off-rocket-motor

 (params)

 (preconds

 (on rocket-motor) (fuel-not-flowing v6))

 (effects

 (del on rocket-motor) (off rocket-motor)))

(operator

 assert-motor-fired-one-time

 (params)

 (preconds

 (on rocket-motor) (zero times-motor-fired))

 (effects

 (del zero times-motor-fired) (one times-motor-fired)))

(operator

 assert-motor-stopped-one-time

 (params)

 (preconds

 (off rocket-motor) (one times-motor-fired))

 (effects

 (one times-motor-stopped)))

(operator

 assert-motor-fired-two-times

 (params)

 (preconds

 (on rocket-motor) (one times-motor-fired) (one times-motor-stopped))

 (effects

 (del one times-motor-fired) (two times-motor-fired)))

(operator

 assert-motor-stopped-two-times

 (params)

 (preconds

 (off rocket-motor) (two times-motor-fired))

 (effects

 (two times-motor-stopped)))

(operator

 assert-motor-fired-three-times

 (params)

 (preconds

 (on rocket-motor) (two times-motor-fired) (two times-motor-stopped))

 (effects

 (del two times-motor-fired) (three times-motor-fired)))

Facts:

(v1 Valve)

(v1 Object)

(v2 Valve)

(v2 Object)

(v3 Valve)

(v3 Object)

(v4 Valve)

(v4 Object)

(v5 Valve)

(v5 Object)

(v6 Valve)

(v6 Object)

(rocket-motor Object)

(times-motor-fired Object)

(times-motor-stopped Object)

(preconds

(top-input-to v3 v6) (bottom-input-to v5 v6)

(top-input-to v2 v5) (bottom-input-to v4 v5)

(top-input-to v1 v4)

(normally-open v1) (normally-open v2) (normally-open v3)

(normally-closed v4) (normally-closed v5) (normally-closed v6)

(off rocket-motor) (zero times-motor-fired))

A. Given this configuration, what is the maximum number of times the rocket can fire?

B. Suppose the goal state is:

(effects

 (two times-motor-fired))
 Manually generate a plan that achieves this goal.

C. For the goal state specified in B, solve this problem (manually) using the POP algorithm. Sketch the final partial-order plan using diagrams of the same form as those used in Ch. 11 of the Russell and Norvig text. Also include a few of the intermediate partial-order plans.

D. For the goal state specified in B, solve this problem (manually) using the Graphplan algorithm. Draw the plan graph using the format used in Ch. 11 of the Russell and Norvig text.

E. For the goal state specified in B, solve this problem (manually) using the FF algorithm. Summarize the steps of the algorithm. Be sure to include the relaxed plan graph.

F. Verify your manual solutions by using the UCPOP, Graphplan, and FF software, with appropriate input formulations, to solve this problem. Details of how to run this software are provided on the web site.

G. Discuss the advantages and disadvantages of each algorithm with respect to this problem.

H. Discuss limitations of the STRIPS language for this sort of problem.

Problem 2 – Forward State-Space Search

Attempt to solve problem 1 using forward state-space search (see Russell and Norvig, Ch. 11, for a description of this algorithm.

A. Draw the first two levels of the search tree (assuming breadth-first search).

B. Estimate the size of the full search tree.

C. Is the solution to this problem unique? If not, are some solutions more optimal than others (in terms of number of steps)? Is forward state-space search guaranteed to find the optimal solution?

D. Discuss how the size of the search tree increases as the number of “rungs” in the valve ladder , and the number of required firings increases.

E. Would backward state-space search work better for this problem?

Problem 3 – Using Planning Software for Larger Problems

The spare tire problem is a well-known benchmark problem for planning algorithms (see Russell and Norvig, Ch. 11, for description of this problem).

In this exercise, you will use provided planning software to generate plans that solve the spare tire problem. See the web site for detailed information on how to run this software. Note that the web site also contains formulations for each program. This is necessary because, although the problem is the same, each program requires the formulation to be specified in its own format. Although the formats are not identical, it should be clear that they formulate the same problem.

A. Solve this problem using the Graphplan software. Provide the generated plan.

B. Solve this problem using the FF software. Provide the generated plan.

C. Solve this problem using UCPOP. Provide the generated plan.

D. Compare the plans generated by these algorithms. Are they the same? If not, which is best? Try to come up with a better plan manually.

E. For each algorithm, hypothesize a change to the formulation that will make the problem more difficult for that algorithm. Check whether or not your hypothesis is true by testing it with the algorithm.

Problem 4 – Cleaning Up Rooms

Consider a planning problem domain involving 3 or more rooms, 1 or more robots, and 1 or more objects. Each object has a room that it is currently in, and a room that it should be in. Each robot can carry at most one object at a time. The problem is to have the robots carry all the objects to their correct room.

There is an additional constraint that the rooms are arranged in a circular fashion. Thus, from any room, it is possible to go to the neighboring room on the left or right. It is not possible to go from any room directly to any other. For example, if there are 3 rooms (A, B, and C), they are arranged in the following way:

 A’s right neighbor is B, and left neighbor is C

 B’s right neighbor is C, and left neighbor is A

 C’s right neighbor is A, and left neighbor is B

This problem is a variation of the classic “Travelling Salesman Problem” (TSP).

A. Formulate this problem for 1 robot, 6 rooms, and 12 objects. Solve using the Graphplan software (provide your formulation, and the solution output by Graphplan).

B. Increase the number of rooms and solve using the Graphplan software (provide your formulation, and the solution output by Graphplan). Explain how problem complexity changes in terms of search space and solution.

C. Increase the number of objects and solve using the Graphplan software (provide your formulation, and the solution output by Graphplan). Explain how problem complexity changes in terms of search space and solution.

D. Increase the number of robots and solve using the Graphplan software (provide your formulation, and the solution output by Graphplan). Explain how problem complexity changes in terms of search space and solution.

Speculate why use of more than one robot may allow for a better plan even though these problem formulations and planning algorithms do not explicitly provide for cooperating, concurrent agents (resources).

Problem 5 – Temporal Planning

To be provided next week.

Problem 6 – Advanced Lecture

Begin preparing for your advanced lecture. The first step will be to decide which topic you are interested in. It will be helpful to look at the lecture schedule for the rest of the term (this will be posted on the web site shortly). Email the TA a short description of the topic you would like to do. We will then post a list of students and topics and use this to form teams.

_1093798146.vsd
�

text�

�

Fuel�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Rocket
Motor�

V1�

V2�

V3�

V4�

V5�

V6�

�

�

�

�

�

NO�

NO�

NO�

NC�

NC�

NC�

