Massachusetts Institute of Technology

16.412J/6.834J Intelligent Embedded Systems

Problem Set #4

Solutions

Problem 1 – Off to the Races

Consider the following racetrack.

[image: image1.wmf]1

2

3

4

5

6

7

8

9

10

It is a typical oval track with two straight-aways and two turns. Each straight-away has 4 segments, and each segment has an inside and outside lane. The turns, each consisting of one segment, also have inside and outside lanes.

In this problem, a single race car is performing time trials. The goal is to minimize the time needed to traverse segments (to complete one lap, for example). The race car begins in segment 1 in the inside lane, and moves in the counter-clockwise direction. It can travel at 0, 20, 40, or 60 mph. Its initial speed is 0.

Two types of actions are possible for the car: changing speed, and changing lane. Speed-related actions are:

· go 20 mph. faster (subject to maximum speed of 60 mph. constraint)

· go 20 mph. slower (subject to minimum speed of 0 mph. constraint)

· stay at same speed

Lane-related actions are:

· switch lanes

· stay in same lane

State is represented by the car’s

· segment

· lane

· speed

For straight segments, the state transition function has the following characteristics:

· If the action is to go 20 mph faster, and the speed in the current state is not already the maximum, the speed in the next state will be 20 mph faster with probability 0.9, or will not change with probability 0.1. If the speed in the current state is already the maximum, the speed in the next state will be the same with probability 1.

· If the action is to go 20 mph slower, and the speed in the current state is not already the minimum, the speed in the next state will be 20 mph slower with probability 0.9, or will not change with probability 0.1. If the speed in the current state is already the minimum, the speed in the next state will be the same with probability 1.

· If the action is to stay at the same speed, this will happen with probability 1.

· If the action is to switch lanes, this will happen with probability 0.9; the car will stay in the same lane with probability 0.1.

· If the action is to stay in the same lane, this will happen with probability 1.

The probabilities model unforeseen circumstances like oil slicks, driver hesitation, etc.

The transition function for the turns is the same as for the straight segments, with the following addition. The faster the car is going through the turn, the higher the likelihood it will crash. The likelihood is even higher in the inside lane of the turn. A crash is modeled here as resetting the speed to 0 (as is done in many video games). Finally, the segment 8 turn is banked, so the likelihood of crash here is lower than for the segment 3 turn. To summarize,

For segment 3 turn, outside lane, probability of crash is as follows:

	Speed
	Probability of crash

	0
	0

	20
	0

	40
	0.1

	60
	0.3

For segment 3 turn, inside lane, probability of crash is as follows:

	Speed
	Probability of crash

	0
	0

	20
	0.1

	40
	0.3

	60
	0.5

For segment 8 turn, outside lane, probability of crash is as follows:

	Speed
	Probability of crash

	0
	0

	20
	0

	40
	0

	60
	0.1

For segment 8 turn, inside lane, probability of crash is as follows:

	Speed
	Probability of crash

	0
	0

	20
	0

	40
	0.1

	60
	0.3

Reward is based solely on current state (not action). For the straight segments the reward is based only on speed: 0 for 0 mph, 1 for 20 mph, 2 for 40 mph, and 3 for 60 mph.

For the inside lanes on the turns, reward is: 0 for 0 mph, 2 for 20 mph, 4 for 40 mph, and 6 for 60 mph. For the outside lanes, reward is the same as for straight segments.

The race car will always transition to the next segment on the track with probability 1 unless its speed is 0, or if it crashes.

A. MDP

Implement the value iteration algorithm in the language of your choice. Please do not collaborate with other students when writing the code. Provide your commented listing.

Run your algorithm for this problem. You may choose a suitable epsilon. What is the optimal value function V*? What is the optimal Q*(s,a) function for this value function? What is the optimal policy?

Plot |V(t) – V*| as a function of iteration t (V(t) is the approximate value function computed at each iteration. Use the maximum norm; the absolute value of the largest difference in V over the state space.

Value iteration is accomplished by running the method mdp.valueIteration (see mdp_main.c in Appendix).

The algorithm takes 76 steps to converge to an error of less than 0.001. The resulting value function and policy is shown below.

Vcurrent, policy:

segment = 1 lane = 0 speed = 0

V = 25.223

policy = ACC

segment = 1 lane = 0 speed = 20

V = 28.338

policy = ACC

segment = 1 lane = 0 speed = 40

V = 30.4028

policy = ACC

segment = 1 lane = 0 speed = 60

V = 31.5011

policy = NOACTION

segment = 1 lane = 1 speed = 0

V = 24.494

policy = ACC

segment = 1 lane = 1 speed = 20

V = 27.519

policy = ACC

segment = 1 lane = 1 speed = 40

V = 30.1698

policy = ACC

segment = 1 lane = 1 speed = 60

V = 31.4844

policy = CHANGELANES

segment = 2 lane = 0 speed = 0

V = 25.4339

policy = ACC

segment = 2 lane = 0 speed = 20

V = 28.5749

policy = ACC

segment = 2 lane = 0 speed = 40

V = 30.5766

policy = ACC

segment = 2 lane = 0 speed = 60

V = 31.6689

policy = NOACTION

segment = 2 lane = 1 speed = 0

V = 24.6871

policy = ACC

segment = 2 lane = 1 speed = 20

V = 27.7359

policy = ACC

segment = 2 lane = 1 speed = 40

V = 29.6588

policy = CHANGELANES

segment = 2 lane = 1 speed = 60

V = 31.4832

policy = CHANGELANES

segment = 3 lane = 0 speed = 0

V = 25.7462

policy = ACC

segment = 3 lane = 0 speed = 20

V = 28.9258

policy = ACC

segment = 3 lane = 0 speed = 40

V = 30.8301

policy = ACC

segment = 3 lane = 0 speed = 60

V = 31.8552

policy = NOACTION

segment = 3 lane = 1 speed = 0

V = 25.2383

policy = ACC

segment = 3 lane = 1 speed = 20

V = 28.3552

policy = ACC

segment = 3 lane = 1 speed = 40

V = 29.8577

policy = ACC

segment = 3 lane = 1 speed = 60

V = 29.7919

policy = CHANGELANES

segment = 4 lane = 0 speed = 0

V = 25.399

policy = ACC

segment = 4 lane = 0 speed = 20

V = 28.5357

policy = ACC

segment = 4 lane = 0 speed = 40

V = 30.6129

policy = ACC

segment = 4 lane = 0 speed = 60

V = 31.7118

policy = NOACTION

segment = 4 lane = 1 speed = 0

V = 25.3502

policy = ACC

segment = 4 lane = 1 speed = 20

V = 28.481

policy = ACC

segment = 4 lane = 1 speed = 40

V = 30.6084

policy = ACC

segment = 4 lane = 1 speed = 60

V = 31.7116

policy = CHANGELANES

segment = 5 lane = 0 speed = 0

V = 25.5686

policy = ACC

segment = 5 lane = 0 speed = 20

V = 28.7263

policy = ACC

segment = 5 lane = 0 speed = 40

V = 30.8039

policy = ACC

segment = 5 lane = 0 speed = 60

V = 31.9029

policy = NOACTION

segment = 5 lane = 1 speed = 0

V = 25.3144

policy = ACC

segment = 5 lane = 1 speed = 20

V = 28.4407

policy = ACC

segment = 5 lane = 1 speed = 40

V = 30.7681

policy = ACC

segment = 5 lane = 1 speed = 60

V = 31.9013

policy = CHANGELANES

segment = 6 lane = 0 speed = 0

V = 25.7526

policy = ACC

segment = 6 lane = 0 speed = 20

V = 28.933

policy = ACC

segment = 6 lane = 0 speed = 40

V = 31.0162

policy = ACC

segment = 6 lane = 0 speed = 60

V = 32.1152

policy = NOACTION

segment = 6 lane = 1 speed = 0

V = 24.8997

policy = ACC

segment = 6 lane = 1 speed = 20

V = 27.9747

policy = ACC

segment = 6 lane = 1 speed = 40

V = 30.7702

policy = ACC

segment = 6 lane = 1 speed = 60

V = 32.0983

policy = CHANGELANES

segment = 7 lane = 0 speed = 0

V = 25.9163

policy = ACC

segment = 7 lane = 0 speed = 20

V = 29.1168

policy = ACC

segment = 7 lane = 0 speed = 40

V = 31.251

policy = ACC

segment = 7 lane = 0 speed = 60

V = 32.3512

policy = NOACTION

segment = 7 lane = 1 speed = 0

V = 24.7486

policy = ACC

segment = 7 lane = 1 speed = 20

V = 27.8049

policy = ACC

segment = 7 lane = 1 speed = 40

V = 30.2137

policy = CHANGELANES

segment = 7 lane = 1 speed = 60

V = 32.1626

policy = CHANGELANES

segment = 8 lane = 0 speed = 0

V = 25.7376

policy = ACC

segment = 8 lane = 0 speed = 20

V = 28.9161

policy = ACC

segment = 8 lane = 0 speed = 40

V = 31.5003

policy = ACC

segment = 8 lane = 0 speed = 60

V = 32.6134

policy = NOACTION

segment = 8 lane = 1 speed = 0

V = 24.8403

policy = ACC

segment = 8 lane = 1 speed = 20

V = 27.908

policy = ACC

segment = 8 lane = 1 speed = 40

V = 29.9927

policy = ACC

segment = 8 lane = 1 speed = 60

V = 30.5184

policy = CHANGELANES

segment = 9 lane = 0 speed = 0

V = 24.9565

policy = ACC

segment = 9 lane = 0 speed = 20

V = 28.0386

policy = ACC

segment = 9 lane = 0 speed = 40

V = 30.1154

policy = ACC

segment = 9 lane = 0 speed = 60

V = 31.2143

policy = NOACTION

segment = 9 lane = 1 speed = 0

V = 24.9106

policy = ACC

segment = 9 lane = 1 speed = 20

V = 27.987

policy = ACC

segment = 9 lane = 1 speed = 40

V = 30.1111

policy = ACC

segment = 9 lane = 1 speed = 60

V = 31.2142

policy = CHANGELANES

segment = 10 lane = 0 speed = 0

V = 25.0787

policy = ACC

segment = 10 lane = 0 speed = 20

V = 28.1759

policy = ACC

segment = 10 lane = 0 speed = 40

V = 30.2513

policy = ACC

segment = 10 lane = 0 speed = 60

V = 31.3502

policy = NOACTION

segment = 10 lane = 1 speed = 0

V = 24.8451

policy = ACC

segment = 10 lane = 1 speed = 20

V = 27.9134

policy = ACC

segment = 10 lane = 1 speed = 40

V = 30.2168

policy = ACC

segment = 10 lane = 1 speed = 60

V = 31.3487

policy = CHANGELANES

Value iteration completed.

As can be seen from the policy, this driver is not risk averse! The driver chooses the policy that is most likely to lead to crash. On average, the rewards outweigh the risks.

B. Reinforcement Learning – Q-learning algorithm

Implement a simulator of the racetrack MDP. That is, implement a function that, when given state s and action a, returns the appropriate reward r, and a new state s’, drawn according to the above-described probabilities. Provide your commented listing.

Implement the Q-learning algorithm for this problem. Provide your commented listing.

Implement an exploration strategy that picks the apparent best action with probability 0.9 and a random action with probability 0.1. Combine this with the simulator and Q-learning algorithm. Run this and show that it converges to the values obtained in part A.

Due to the random nature of Q-learning, convergence results varied widely. On one run, this algorithm converged to an error of less than 0.0001 in less than 8000 steps. The resulting policy was as follows:

segment = 1 lane = 0 speed = 0

policy = ACC

segment = 1 lane = 0 speed = 20

policy = ACC

segment = 1 lane = 0 speed = 40

policy = ACC

segment = 1 lane = 0 speed = 60

policy = NOACTION

segment = 1 lane = 1 speed = 0

policy = ACC

segment = 1 lane = 1 speed = 20

policy = ACC

segment = 1 lane = 1 speed = 40

policy = ACC

segment = 1 lane = 1 speed = 60

policy = NOACTION

segment = 2 lane = 0 speed = 0

policy = ACC

segment = 2 lane = 0 speed = 20

policy = ACC

segment = 2 lane = 0 speed = 40

policy = ACC

segment = 2 lane = 0 speed = 60

policy = NOACTION

segment = 2 lane = 1 speed = 0

policy = ACC

segment = 2 lane = 1 speed = 20

policy = ACC

segment = 2 lane = 1 speed = 40

policy = CHANGELANES

segment = 2 lane = 1 speed = 60

policy = CHANGELANES

segment = 3 lane = 0 speed = 0

policy = ACC

segment = 3 lane = 0 speed = 20

policy = ACC

segment = 3 lane = 0 speed = 40

policy = ACC

segment = 3 lane = 0 speed = 60

policy = NOACTION

segment = 3 lane = 1 speed = 0

policy = ACC

segment = 3 lane = 1 speed = 20

policy = ACC

segment = 3 lane = 1 speed = 40

policy = ACC

segment = 3 lane = 1 speed = 60

policy = NOACTION

segment = 4 lane = 0 speed = 0

policy = ACC

segment = 4 lane = 0 speed = 20

policy = ACC

segment = 4 lane = 0 speed = 40

policy = ACC

segment = 4 lane = 0 speed = 60

policy = NOACTION

segment = 4 lane = 1 speed = 0

policy = ACC

segment = 4 lane = 1 speed = 20

policy = ACC

segment = 4 lane = 1 speed = 40

policy = ACC

segment = 4 lane = 1 speed = 60

policy = NOACTION

segment = 5 lane = 0 speed = 0

policy = ACC

segment = 5 lane = 0 speed = 20

policy = ACC

segment = 5 lane = 0 speed = 40

policy = ACC

segment = 5 lane = 0 speed = 60

policy = NOACTION

segment = 5 lane = 1 speed = 0

policy = ACC

segment = 5 lane = 1 speed = 20

policy = ACC

segment = 5 lane = 1 speed = 40

policy = ACC

segment = 5 lane = 1 speed = 60

policy = NOACTION

segment = 6 lane = 0 speed = 0

policy = ACC

segment = 6 lane = 0 speed = 20

policy = ACC

segment = 6 lane = 0 speed = 40

policy = ACC

segment = 6 lane = 0 speed = 60

policy = NOACTION

segment = 6 lane = 1 speed = 0

policy = ACC

segment = 6 lane = 1 speed = 20

policy = ACC

segment = 6 lane = 1 speed = 40

policy = ACC

segment = 6 lane = 1 speed = 60

policy = NOACTION

segment = 7 lane = 0 speed = 0

policy = ACC

segment = 7 lane = 0 speed = 20

policy = ACC

segment = 7 lane = 0 speed = 40

policy = ACC

segment = 7 lane = 0 speed = 60

policy = NOACTION

segment = 7 lane = 1 speed = 0

policy = ACC

segment = 7 lane = 1 speed = 20

policy = ACC

segment = 7 lane = 1 speed = 40

policy = CHANGELANES

segment = 7 lane = 1 speed = 60

policy = CHANGELANES

segment = 8 lane = 0 speed = 0

policy = ACC

segment = 8 lane = 0 speed = 20

policy = ACC

segment = 8 lane = 0 speed = 40

policy = ACC

segment = 8 lane = 0 speed = 60

policy = NOACTION

segment = 8 lane = 1 speed = 0

policy = ACC

segment = 8 lane = 1 speed = 20

policy = ACC

segment = 8 lane = 1 speed = 40

policy = ACC

segment = 8 lane = 1 speed = 60

policy = NOACTION

segment = 9 lane = 0 speed = 0

policy = ACC

segment = 9 lane = 0 speed = 20

policy = ACC

segment = 9 lane = 0 speed = 40

policy = ACC

segment = 9 lane = 0 speed = 60

policy = NOACTION

segment = 9 lane = 1 speed = 0

policy = ACC

segment = 9 lane = 1 speed = 20

policy = ACC

segment = 9 lane = 1 speed = 40

policy = ACC

segment = 9 lane = 1 speed = 60

policy = NOACTION

segment = 10 lane = 0 speed = 0

policy = ACC

segment = 10 lane = 0 speed = 20

policy = ACC

segment = 10 lane = 0 speed = 40

policy = ACC

segment = 10 lane = 0 speed = 60

policy = NOACTION

segment = 10 lane = 1 speed = 0

policy = ACC

segment = 10 lane = 1 speed = 20

policy = ACC

segment = 10 lane = 1 speed = 40

policy = ACC

segment = 10 lane = 1 speed = 60

policy = NOACTION

This policy is similar to that in part A except that it waits until the segment before the curve to switch to the inside lane. This is probably because there is no difference, in reward, between switching during the straights, and switching just before the turns.

C. Reinforcement Learning – Q-learning convergence

· Run the Q-learning algorithm for 10 steps, starting in the initial state

· Freeze and run the policy using greedy selection for 25 steps, starting in the initial state. Calculate the total discounted reward.

· Repeat this experiment, first running Q-learning for 20 steps, 30 steps, etc.

· Plot the discounted reward as a function of number of learning steps. This should converge to V*.

Convergence varied significantly with each run. This may indicate that the alpha factor of 0.1 was too large. Some runs resulted in convergence to error < 0.0001 in less than 8000 steps. In other runs, error was as high as 0.015 after 20,000 steps. In all of these runs, however, the policy was very similar to the one obtained for part B (see above).

D. Reinforcement Learning – Dyna algorithm

Implement the Dyna algorithm, and replace the Q-learning algorithm in part B with Dyna. Compare results in terms of convergence based on number of actions needed, and computational effort.

E. Extra Credit – Prioritized Sweeping

Implement the prioritized sweeping algorithm, and compare with Dyna and Q-learning.

Appendix – C++ Code for Problem 1 (MDP and Reinforcement Learning)

mdp_main.cpp

#include "mdp.h"

#include <time.h>

#include <stdio.h>

int main(int argc, char * argv[])

{

 cout << "In mdp_main main." << endl;

 MDP mdp1;

 mdp1.valueIteration();

 cout << "Value iteration completed." << endl;

 // mdp1.qLearning();

 // cout << "Q learning completed." << endl;

}

mdp.h

//==

// Copyright (c) 2002

Andreas Hofmann

// All Rights Reserved

Massachusetts Institute of Technology

//

//==

#ifndef __MDP__

#define __MDP__

#include <cstdlib>

#include <iostream>

#include <string>

#include <list>

#include <vector>

static const int NUMSTATES = 80;

static const int NUMACTIONS = 4;

/**

 *

 * TransitionTable class

 *

 * This is currently specialized for the racetrack example.

 * This could be generalized by having a more abstract TransitionTable

 * class, and then having a more specialized RacetrackTransitionTable

 * class that inherits from it.

 *

 */

class ActionResult;

class MDP;

class TransitionTable

{

 friend class MDP;

public:

 //--

 //
CONSTRUCTOR

 //--

 TransitionTable();

 ~TransitionTable();

 //--

 //
PUBLIC FUNCTION MEMBERS

 //--

 unsigned int getNumStates();

 unsigned int getEncodedState(int track_segment, int lane, int speed);

 void decodeState(int state, int & track_segment, int & lane, int & speed);

 ActionResult * getActionResult(int track_segment, int lane, int speed);

 void GenerateStatesForStraightSegment(int track_segment);

 void GenerateStatesForStraightSegmentAndLane(int track_segment, int lane);

 void GenerateStatesForCurvedSegment(int track_segment, int lane,

 float crash20, float crash40,

 float crash60);

 float getTransitionProbability(int state, int action, int nextState);

private:

 unsigned int tableNumStates;

 vector<ActionResult *> * actionResults;

};

/**

 *

 * MDP class

 *

 * This represents a Markov decision process for the racetrack application.

 *

 */

class MDP

{

public:

 //--

 //
CONSTRUCTOR

 //--

 MDP();

 ~MDP();

 //--

 //
PUBLIC FUNCTION MEMBERS

 //--

 void valueIteration();

 float reward(int state, int action);

 void simulateRacetrack(int state, int action, int & nextState, float & rewardResult);

 void qLearning();

private:

 TransitionTable stateTransitionTable;

 vector<float> Vcurrent;

 vector<float> Vnext;

 vector<int> policy;

 vector<float> Qvec;

 float discountFactor; // gamma

 float qlearningFactor; // alpha

};

class NextState;

typedef list<NextState *> NextStateList;

static const int NOACTION = 0;

static const int ACC = 1;

static const int DEC = 2;

static const int CHANGELANES = 3;

class ActionResult

{

 friend class MDP;

public:

 //--

 //
CONSTRUCTOR

 //--

 ActionResult();

 ~ActionResult();

 //--

 //
PUBLIC FUNCTION MEMBERS

 //--

 unsigned int getNumActions();

 void pushNextState(int action, float pr, int ns);

 float getActionResultProbability(int action, int nextState);

private:

 unsigned int tableNumActions;

 vector<NextStateList *> * nextStates;

};

class NextState

{

 friend class MDP;

 friend class ActionResult;

public:

 //--

 //
CONSTRUCTOR

 //--

 NextState(float pr, int ns);

 ~NextState();

 //--

 //
PUBLIC FUNCTION MEMBERS

 //--

private:

 float prob;

 int nextState;

};

#endif //ndef __MDP__

mdp.cpp

//==

// Copyright (c) 2002 Andreas Hofmann

// All Rights Reserved

Massachusetts Institute of Technology

//

//==

#include <cstdlib>

#include <ctime>

#include <cstdio>

#include <cassert>

#include <cmath>

#include <iomanip>

#include <string>

#include "mdp.h"

// The following simple error handler suffices here. A more

// sophisticated error handling scheme using exceptions could

// be used, but is not necessary.

void mdpError(string s)

{

 cerr << s << '\n';

 exit(1);

}

// MDP

//---------------------------------

//
CONSTRUCTORS

//---------------------------------

MDP::MDP()

{

 Vcurrent.resize(NUMSTATES);

 Vnext.resize(NUMSTATES);

 policy.resize(NUMSTATES);

 Qvec.resize(NUMSTATES * NUMACTIONS);

 discountFactor = 0.9;

 qlearningFactor = 0.1;

}

MDP::~MDP()

{

}

//---------------------------------

//
PUBLIC FUNCTION METHODS

//---------------------------------

string actionAsString(int actionInt)

{

 string action;

 switch(actionInt)

 {

 case 0:

 action = "NOACTION";

 break;

 case 1:

 action = "ACC";

 break;

 case 2:

 action = "DEC";

 break;

 case 3:

 action = "CHANGELANES";

 break;

 default:

 action = "UNKNOWN"; // shouldn't happen

 break;

 }

 return action;

}

void MDP::valueIteration()

{

 int i, j, k;

 vector<float> Qvalue(NUMACTIONS); // Q(s, a) vector

 float discountTerm;

 float maxQval;

 int bestAction;

 float maxChange, change;

 float epsilon = 0.001;

 // Initialize V to arbitrary value (0)

 for (i = 0; i < NUMSTATES; i++) {

 Vcurrent[i] = 0.0;

 Vnext[i] = 0.0;

 }

 for (int stepCount = 0; stepCount < 100; stepCount++) {

 for (i = 0; i < NUMSTATES; i++) { // i is state index

 maxQval = -1000.0;

 for (j = 0; j < NUMACTIONS; j++) { // j is action index

discountTerm = 0.0f;

for (k = 0; k < NUMSTATES; k++) { // k is next state index

 // cout << "valueIteration 5, i = " << i << " j = " << j << " k = " << k << endl;

 discountTerm +=

 stateTransitionTable.getTransitionProbability(i, j, k) * Vcurrent[k];

}

discountTerm *= discountFactor;

Qvalue[j] = reward(i, j) + discountTerm;

if (Qvalue[j] > maxQval) {

 maxQval = Qvalue[j];

 bestAction = j;

 Vnext[i] = Qvalue[j];

 policy[i] = j;

}

 }

 }

 maxChange = 0.0;

 for (i = 0; i < NUMSTATES; i++) { // i is state index

 change = abs(Vnext[i] - Vcurrent[i]);

 if (change > maxChange)

maxChange = change;

 Vcurrent[i] = Vnext[i];

 }

 if (maxChange < epsilon)

 break;

 cout << "Value iteration step count = " << stepCount << endl;

 cout << "maxChange = " << maxChange << endl;

 }

 int track_segment, lane, speed;

 string action;

 cout << "Vcurrent, policy:" << endl;

 for (i = 0; i < NUMSTATES; i++) { // i is state index

 stateTransitionTable.decodeState(i, track_segment, lane, speed);

 cout << "segment = " << track_segment << " lane = " << lane << " speed = " << speed << endl;

 cout << "V = " << Vcurrent[i] << endl;

 action = actionAsString(policy[i]);

 cout << "policy = " << action << endl;

 }

}

float MDP::reward(int state, int action)

{

 float res = action; // To gag compiler

 // In this application, reward is function of state only, not action.

 int track_segment, lane, speed;

 stateTransitionTable.decodeState(state, track_segment, lane, speed);

 if ((track_segment == 3) || (track_segment == 8)) { // if curved segment

 if (lane == 1)

 res = speed / 20;

 else // if lane == 0

 res = 2 * (speed / 20);

 } else // if straight segment

 res = speed / 20;

 return res;

}

void MDP::simulateRacetrack(int state, int action, int & nextState, float & rewardResult)

{

 // Initialize random generator.

 srand(time(NULL));

 ActionResult * ar = (*(stateTransitionTable.actionResults))[state];;

 NextStateList * nslist;

 NextState * nstate;

 nslist = (*(ar->nextStates))[action];

 if (nslist == NULL)

 mdpError(string("No next state for action."));

 float cumProb = 0.0;

 float randomResult = (rand() / (float)RAND_MAX); // roll the dice

 for(NextStateList::iterator nsiter = (*nslist).begin();

 nsiter != (*nslist).end();

 nsiter++) {

 nstate = *nsiter;

 cumProb += nstate->prob;

 if (randomResult < cumProb) {

 nextState = nstate->nextState;

 break;

 }

 }

 rewardResult = reward(state, action);

}

void MDP::qLearning()

{

 int i, j, k;

 int Qindex, Qindex2;

 int nextState;

 float reward;

 float maxQval;

 float Qval;

 int QvecSize = NUMSTATES * NUMACTIONS;

 float change, maxChange;

 float epsilon = 0.0001;

 // Initialize Q to arbitrary value (0)

 for (i = 0; i < QvecSize; i++) {

 Qvec[i] = 0;

 }

 for (int stepCount = 0; stepCount < 20000; stepCount++) {

 maxChange = 0.0;

 for (i = 0; i < NUMSTATES; i++) { // i is state index

 for (j = 0; j < NUMACTIONS; j++) { // j is action index

Qindex = i * 4 + j;

simulateRacetrack(i, j, nextState, reward); // perform experiment

maxQval = -1000.0;

for (k=0; k < NUMACTIONS; k++) {

 Qindex2 = nextState * 4 + k;

 if (Qvec[Qindex2] > maxQval)

 maxQval = Qvec[Qindex2];

}

Qval = Qvec[Qindex];

Qvec[Qindex] = Qval +

 qlearningFactor * (reward + discountFactor * maxQval - Qval);

change = abs(Qvec[Qindex] - Qval);

if (change > maxChange)

 maxChange = change;

 }

 }

 if (maxChange < epsilon)

 break;

 cout << "Q learning step count = " << stepCount << endl;

 cout << "maxChange = " << maxChange << endl;

 }

 // Display results

 int track_segment, lane, speed;

 int bestAction;

 string action;

 cout << "Q value, policy:" << endl;

 for (i = 0; i < NUMSTATES; i++) {

 stateTransitionTable.decodeState(i, track_segment, lane, speed);

 cout << "segment = " << track_segment << " lane = " << lane << " speed = " << speed << endl;

 maxQval = -1000.0;

 for (j=0; j < NUMACTIONS; j++) {

 Qindex = i * NUMACTIONS + j;

 Qval = Qvec[Qindex];

 if (Qval > maxQval) {

maxQval = Qval;

bestAction = j;

 }

 // cout << "Qval for action " << actionAsString(j) << " = " << Qval << endl;

 }

 cout << "policy = " << actionAsString(bestAction) << endl;

 }

}

// TransitionTable

//---------------------------------

//
CONSTRUCTORS

//---------------------------------

TransitionTable::TransitionTable()

{

 tableNumStates = NUMSTATES;

 actionResults = new vector<ActionResult *>(tableNumStates);

 GenerateStatesForStraightSegment(1);

 GenerateStatesForStraightSegment(2);

 GenerateStatesForStraightSegment(4);

 GenerateStatesForStraightSegment(5);

 GenerateStatesForStraightSegment(6);

 GenerateStatesForStraightSegment(7);

 GenerateStatesForStraightSegment(9);

 GenerateStatesForStraightSegment(10);

 GenerateStatesForCurvedSegment(3, 0, 0.1, 0.3, 0.5);

 GenerateStatesForCurvedSegment(3, 1, 0.0, 0.1, 0.3);

 GenerateStatesForCurvedSegment(8, 0, 0.0, 0.1, 0.3);

 GenerateStatesForCurvedSegment(8, 1, 0.0, 0.0, 0.1);

}

TransitionTable::~TransitionTable()

{

 for (unsigned int i = 0; i < tableNumStates; i++) {

 ActionResult * ar = (*actionResults)[i];

 if (ar != NULL)

 delete ar;

 }

 delete actionResults;

}

//---------------------------------

//
PUBLIC FUNCTION METHODS

//---------------------------------

void TransitionTable::GenerateStatesForStraightSegment(int track_segment)

{

 GenerateStatesForStraightSegmentAndLane(track_segment, 0);

 GenerateStatesForStraightSegmentAndLane(track_segment, 1);

}

void TransitionTable::GenerateStatesForStraightSegmentAndLane(int track_segment, int lane)

{

 // Create action results

 ActionResult * ar;

 int currentState;

 int changedLane;

 int nextSegment;

 if (lane == 1)

 changedLane = 0;

 else

 changedLane = 1;

 if (track_segment == 10)

 nextSegment = 1;

 else

 nextSegment = track_segment + 1;

 // State for speed 0 mph

 currentState = getEncodedState(track_segment, lane, 0);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, 1.0, currentState);

 // Next states for ACC

 ar->pushNextState(ACC, 0.1, currentState);

 ar->pushNextState(ACC, 0.9,

 getEncodedState(track_segment, lane, 20)); // increase speed to 20 mph.

 // Next states for DEC

 ar->pushNextState(DEC, 1.0, currentState);

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, 0.1, currentState);

 ar->pushNextState(CHANGELANES, 0.9,

 getEncodedState(track_segment, changedLane, 0)); // change lanes.

 // State for speed = 1 (20 mph)

 currentState = getEncodedState(track_segment, lane, 20);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, 1.0, getEncodedState(nextSegment, lane, 20)); // next segment

 // Next states for ACC

 ar->pushNextState(ACC, 0.1, getEncodedState(nextSegment, lane, 20));

 ar->pushNextState(ACC, 0.9,

 getEncodedState(nextSegment, lane, 40)); // increase speed to 40 mph.

 // Next states for DEC

 ar->pushNextState(DEC, 0.1, getEncodedState(nextSegment, lane, 20));

 ar->pushNextState(DEC, 0.9,

 getEncodedState(nextSegment, lane, 0)); // decrease speed to 0 mph.

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, 0.1, getEncodedState(nextSegment, lane, 20));

 ar->pushNextState(CHANGELANES, 0.9,

 getEncodedState(nextSegment, changedLane, 20)); // change lanes.

 // State for speed = 2 (40 mph)

 currentState = getEncodedState(track_segment, lane, 40);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, 1.0, getEncodedState(nextSegment, lane, 40)); // next segment

 // Next states for ACC

 ar->pushNextState(ACC, 0.1, getEncodedState(nextSegment, lane, 40));

 ar->pushNextState(ACC, 0.9,

 getEncodedState(nextSegment, lane, 60)); // increase speed to 60 mph.

 // Next states for DEC

 ar->pushNextState(DEC, 0.1, getEncodedState(nextSegment, lane, 40));

 ar->pushNextState(DEC, 0.9,

 getEncodedState(nextSegment, lane, 20)); // decrease speed to 20 mph.

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, 0.1, getEncodedState(nextSegment, lane, 40));

 ar->pushNextState(CHANGELANES, 0.9,

 getEncodedState(nextSegment, changedLane, 40)); // change lanes.

 // State for speed = 3 (60 mph)

 currentState = getEncodedState(track_segment, lane, 60);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, 1.0, getEncodedState(nextSegment, lane, 60)); // next segment

 // Next states for ACC

 ar->pushNextState(ACC, 1.0, getEncodedState(nextSegment, lane, 60));

 // Next states for DEC

 ar->pushNextState(DEC, 0.1, getEncodedState(nextSegment, lane, 60));

 ar->pushNextState(DEC, 0.9,

 getEncodedState(nextSegment, lane, 40)); // decrease speed to 40 mph.

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, 0.1, getEncodedState(nextSegment, lane, 60));

 ar->pushNextState(CHANGELANES, 0.9,

 getEncodedState(nextSegment, changedLane, 60)); // change lanes.

}

void TransitionTable::GenerateStatesForCurvedSegment(int track_segment, int lane,

 float crash20, float crash40,

 float crash60)

{

 // Create action results

 ActionResult * ar;

 int currentState;

 int changedLane;

 int nextSegment;

 if (lane == 1)

 changedLane = 0;

 else

 changedLane = 1;

 nextSegment = track_segment + 1;

 // State for speed = 0 (0 mph)

 currentState = getEncodedState(track_segment, lane, 0);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, 1.0, currentState);

 // Next states for ACC

 ar->pushNextState(ACC, 0.1, currentState);

 ar->pushNextState(ACC, 0.9,

 getEncodedState(track_segment, lane, 20)); // increase speed to 20 mph.

 // Next states for DEC

 ar->pushNextState(DEC, 1.0, currentState);

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, 0.1, currentState);

 ar->pushNextState(CHANGELANES, 0.9,

 getEncodedState(track_segment, changedLane, 0)); // change lanes.

 // State for speed = 1 (20 mph)

 currentState = getEncodedState(track_segment, lane, 20);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, crash20, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(NOACTION, (1.0 - crash20),

 getEncodedState(nextSegment, lane, 20)); // next segment

 // Next states for ACC

 ar->pushNextState(ACC, crash20, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(ACC, 0.1, getEncodedState(nextSegment, lane, 20));

 ar->pushNextState(ACC, (1.0 - 0.1 - crash20),

 getEncodedState(nextSegment, lane, 40)); // increase speed to 40 mph.

 // Next states for DEC

 ar->pushNextState(DEC, crash20, getEncodedState(nextSegment, lane, 0)); // crash

 ar->pushNextState(DEC, 0.1, getEncodedState(nextSegment, lane, 20));

 ar->pushNextState(DEC, (1.0 - 0.1 - crash20),

 getEncodedState(nextSegment, lane, 0)); // decrease speed to 0 mph.

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, crash20, getEncodedState(nextSegment, lane, 0)); // crash

 ar->pushNextState(CHANGELANES, 0.1, getEncodedState(nextSegment, lane, 20));

 ar->pushNextState(CHANGELANES, (1.0 - 0.1 - crash20),

 getEncodedState(nextSegment, changedLane, 20)); // change lanes.

 // State for speed = 2 (40 mph)

 currentState = getEncodedState(track_segment, lane, 40);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, crash40, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(NOACTION, (1.0 - crash40),

 getEncodedState(nextSegment, lane, 40)); // next segment

 // Next states for ACC

 ar->pushNextState(ACC, crash40, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(ACC, 0.1, getEncodedState(nextSegment, lane, 40));

 ar->pushNextState(ACC, (1.0 - 0.1 - crash40),

 getEncodedState(nextSegment, lane, 60)); // increase speed to 60 mph.

 // Next states for DEC

 ar->pushNextState(DEC, crash40, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(DEC, 0.1, getEncodedState(nextSegment, lane, 40));

 ar->pushNextState(DEC, (1.0 - 0.1 - crash40),

 getEncodedState(nextSegment, lane, 20)); // decrease speed to 20 mph.

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, crash40, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(CHANGELANES, 0.1, getEncodedState(nextSegment, lane, 40));

 ar->pushNextState(CHANGELANES, (1.0 - 0.1 - crash40),

 getEncodedState(nextSegment, changedLane, 40)); // change lanes.

 // State for speed = 3 (60 mph)

 currentState = getEncodedState(track_segment, lane, 60);

 ar = new ActionResult();

 (*actionResults)[currentState] = ar;

 // Next states for NOACTION

 ar->pushNextState(NOACTION, crash60, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(NOACTION, (1.0 - crash60),

 getEncodedState(nextSegment, lane, 60)); // next segment

 // Next states for ACC

 ar->pushNextState(ACC, crash60, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(ACC, (1.0 - crash60), getEncodedState(nextSegment, lane, 60));

 // Next states for DEC

 ar->pushNextState(DEC, crash60, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(DEC, 0.1, getEncodedState(nextSegment, lane, 60));

 ar->pushNextState(DEC, (1.0 - 0.1 - crash60),

 getEncodedState(nextSegment, lane, 40)); // decrease speed to 40 mph.

 // Next states for CHANGELANES

 ar->pushNextState(CHANGELANES, crash60, getEncodedState(track_segment, lane, 0)); // crash

 ar->pushNextState(CHANGELANES, 0.1, getEncodedState(nextSegment, lane, 60));

 ar->pushNextState(CHANGELANES, (1.0 - 0.1 - crash60),

 getEncodedState(nextSegment, changedLane, 60)); // change lanes.

}

float TransitionTable::getTransitionProbability(int state, int action, int nextState)

{

 ActionResult * ar;

 ar = (*actionResults)[state];

 return(ar->getActionResultProbability(action, nextState));

}

unsigned int TransitionTable::getNumStates()

{

 return tableNumStates;

}

unsigned int TransitionTable::getEncodedState(int track_segment, int lane, int speed)

{

 int speedIndex;

 switch(speed)

 {

 case 0:

 speedIndex = 0;

 break;

 case 20:

 speedIndex = 1;

 break;

 case 40:

 speedIndex = 2;

 break;

 case 60:

 speedIndex = 3;

 break;

 default:

 mdpError(string("Incorrect speed in getEncodedState"));

 break;

 }

 if ((track_segment < 1) || (track_segment > 10))

 mdpError(string("Incorrect track_segment in getEncodedState"));

 // lane = 0 means inside lane, lane = 1 means outside

 if ((lane < 0) || (lane > 1))

 mdpError(string("Incorrect lane in getEncodedState"));

 int encodedState = (track_segment - 1) * 8 + lane * 4 + speedIndex;

 return encodedState;

}

void TransitionTable::decodeState(int state, int & track_segment, int & lane, int & speed)

{

 track_segment = (int)floor(state / 8.0);

 int laneResid = state - (track_segment * 8);

 track_segment += 1;

 lane = (int)floor(laneResid / 4.0);

 speed = laneResid - (lane * 4);

 speed = speed * 20;

}

ActionResult * TransitionTable::getActionResult(int track_segment, int lane, int speed)

{

 int encodedState = getEncodedState(track_segment, lane, speed);

 vector<ActionResult *> ar = *actionResults;

 ActionResult * res = ar[encodedState];

 return res;

}

// ActionResult

//---------------------------------

//
CONSTRUCTORS

//---------------------------------

ActionResult::ActionResult()

{

 tableNumActions = NUMACTIONS;

 nextStates = new vector<NextStateList *>(tableNumActions);

}

ActionResult::~ActionResult()

{

 for (unsigned int i = 0; i < tableNumActions; i++) {

 NextStateList * nslist = (*nextStates)[i];

 if (nslist != NULL) {

 for(NextStateList::iterator nsiter = (*nslist).begin();

 nsiter != (*nslist).end();

 nsiter++) {

delete(*nsiter);

 }

 }

 }

 delete nextStates;

}

//--

//
PUBLIC FUNCTION MEMBERS

//--

unsigned int ActionResult::getNumActions()

{

 return tableNumActions;

}

void ActionResult::pushNextState(int action, float pr, int ns)

{

 NextStateList * nslist;

 NextState * nstate;

 if ((*nextStates)[action] == NULL) {

 nslist = new list<NextState *>;

 (*nextStates)[action] = nslist;

 }

 else

 nslist = (*nextStates)[action];

 nstate = new NextState(pr, ns);

 nslist->push_back(nstate);

}

float ActionResult::getActionResultProbability(int action, int nextState)

{

 NextStateList * nslist;

 NextState * nstate;

 nslist = (*nextStates)[action];

 if (nslist == NULL)

 mdpError(string("No next state for action."));

 for(NextStateList::iterator nsiter = (*nslist).begin();

 nsiter != (*nslist).end();

 nsiter++) {

 nstate = *nsiter;

 if (nstate->nextState == nextState)

 return nstate->prob;

 }

 return 0.0; // If no possibility for nextState, return 0.

}

// NextState

//--

//
CONSTRUCTOR

//--

NextState::NextState(float pr, int ns)

 :prob(pr), nextState(ns)

{

}

NextState::~NextState()

{

}

_1096874860.vsd
�

text�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1�

2�

3�

4�

5�

6�

7�

8�

9�

10�

