Optimal searching

UCS, BFS, Best-First, and A*

- $f = g + h \rightarrow A^*$ Search
- $h = 0 \rightarrow$ Uniform cost search
- $g = 1, h = 0 \rightarrow$ Breadth-First search
- $g = 0 \rightarrow$ Best-First search

Optimality of A*

- · Let us assume that f is non-decreasing along each path
 - if not, simply use parent's value
 - if that's the case, we can think of A* as expanding f contours toward the goal; better heuristics make this contour more "eccentric"
- Let G be an optimal goal state with path cost f*
- Let G₂ be a suboptimal goal state with path cost g(G₂) > f*.
 - suppose A* picks G₂ before G (A* is not optimal)
 - suppose n is a leaf node on the path to G when G₂ is chosen
 - if h is admissible, then $f^* \ge f(n)$
 - since n was not chosen, it must be the case that f(n) >= G₂
 - therefore $f^* \ge f(G_2)$, but since G_2 is a goal, $f^* \ge g(G_2)$
 - But this is a contradiction --- G₂ is a better goal node than G
 - Thus, our supposition is false and A* is optimal.

	Search Cost			Effective Branching Factor		
d	IDS	$A^{*}(h_{1})$	A*(<i>h</i> ₂)	IDS	$A^*(h_1)$	$A^{*}(h_{2})$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211		1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
$\gamma_A \perp$	-	39135	1641	-	1.48	1.26

Iterative Deepening A*

- Goals
 - A storage efficient algorithm that we can use in practice
 - Still complete and optimal
- Modification of A*
 - use f-cost limit as depth bound
 - increase threshold as minimum of f(.) of previous cycle
- Each iteration expands all nodes inside the contour for current f-cost
- · same order of node expansion

From here on is optional material

$\alpha - \beta$ Procedure pseudo-code

```
minimax-\alpha-\beta(board, depth, type, \alpha, \beta)
If depth = 0 return Eval-Fn(board)
else if type = max
          cur-max = -inf
          loop for b in succ(board)
               b-val = minimax-\alpha-\beta(b,depth-1,min, \alpha, \beta)
               cur-max = max(b-val,cur-max)
               \alpha = \max(\text{cur-max}, \alpha)
               if cur-max >= \beta finish loop
          return cur-max
     else (type = min)
          cur-min = inf
          loop for b in succ(board)
               b-val = minimax-\alpha-\beta(b,depth-1,max, \alpha, \beta)
               cur-min = min(b-val,cur-min)
               \beta = \min(\text{cur-min}, \beta)
               if cur-min \leq \alpha finish loop
          return cur-min
```


IBM checks in

- Deep thought:
 - 250 chips (2M pos/sec /// 6-7M pos/soc)
 - Evaluation hardware
 - piece placement
 - pawn placement
 - passed pawn eval
 - file configurations
 - 120 parameters to tune
 - Tuning done to master's games
 - hill climbing and linear fits
 - 1989 --- rating of 2480 === Kasparov beats

