
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.034 Artificial Intelligence, Fall 2003
Recitation 11, November 13 &14, 2003

Learning: 3 Demos and a Funeral (Perceptrons &Neural
net; GAs; SVMs

Prof. Robert C. Berwick

Agenda

1. Perceptrons & Neural Nets: quick backprop review
2. Genetic Algorithms
3. Support Vector machines: see slides

1. Neural Networks & Perceptrons: summary equations
a. The Forward Equation:

()zfy =


 >

=
otherwise

zif
zThreshold

0
01

)(

 xe
zSigmoid −+

=
1

1)(

i
i

i xwz ∑=

Output is a function of z, the sum of the weighted inputs. The function f can be a threshold
or a sigmoid.

b. Threshold learning for a simple perceptron:

*)(yyrxw −−=∆ Change in weight = - LearningRate * Input * Error

c. Sigmoid learning for an output node:

 A sigmoid function can be differentiated to get the slope dy/dz = y(1-y).

Using this slope to adjust the weights gives:

)1(*)(yyyyrxw −−−=∆ Change in weight = - Learning Rate * Input * Error * Slope

e. Sigmoid learning for a hidden (non-output) node:

The difference for hidden nodes is that error is defined in terms of the error of the later
nodes:

jij rxw δ−=∆ Change in weight = - Learning Rate * Input * Delta

For output nodes, delta is the slope times the error.
For hidden nodes, delta is the slope times the sum of the weighted deltas of the next layer of
nodes.







−
−−

= ∑
k

jkkjj

jjjj

j wyy
yyyy

δδ)1(
*))(1(

If node i is an output unit

If node i is not an output

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3

2. Mathematical niceties

3. Genetic Algorithms

The simple GA:

1. Start with a random population of n individuals (candidate solutions to the problem).
2. Calculate the fitness f(x) of each individual x in the population.
3. Create a new population of n individuals as follows:

a. Pick individuals to be parents according to their fitness.
b. With probability pc cross over the parents’ genes to form children.
c. With probability pm add a mutation to the child’s genes.

4. Go to step 2, with the new population; repeat.

Genes are usually represented by binary strings, such as 0110010100

Mutation
A common type of mutation is a single bit-flip:

Input: 0110010100
Output: 0111010100

Crossover
Crossover combines genes from two parents:

Input 1: 0110010100
Input 2: 1001101111
Output: 1000010100

Fitness: Proportional vs. Rank
Proportional fitness assigns an individual a chance of reproducing in direct proportion to its fitness:

∑
==

j
j

ii
i xf

xf
ssationFitnetotalPopul

fitness
P

)(
)([Proportional Method]

Rank fitness assigns an individual a chance of reproducing in proportion to its rank in the
population.
(In a population of N individuals, the best gets a rank N, the worst gets a rank 1).

∑
==

j
j

ii
i xr

xr
ationRanktotalPopul

rank
P

)(
)([Rank Method]

Please see the demos, to be posted, on my web site & additional slides on SVMs, Gas

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3

3. Support vector machines - SVMs (see also slides, posted)

• SVMs are another method for classifying observed data, especially good when you don’t
really know what features are important, or if they are not linearly separable; also superb at
conquering overfitting (two sources of error: classifying points correctly; and
generalization error – compare the perceptron, it stops learning after all training
points correct, i.e., no classifier error on training)

• Train system with +, - examples; then give it new samples to test.
• Result of training are decision boundaries and weights; these decision boundaries can be

lines (hyperplanes); or curves, depending on ‘distance measure’ used – a more sophisticated
notion of feature combination (use the dot product of feature values, plus kernel
transformation, see below).

• Support vectors are the data points that lie closest to the decision surface. They are vectors
drawn from the origin to the location of the data point in n-space.

• They are the points most difficult to classify
• They have a direct bearing on the optimum location of the decision surface: by definition,

support vectors are the elements of the training set that would change the position of the
decision boundary if removed.

• Decision boundary is designed to maximize the ‘width’ between one class of samples and
another – the so-called margin or gutter. This minimizes the risk of of mis-classifying
points - we “charge” for mistakes and so avoid over-fitting.

• The Langrangian trick: how to maximize the margin or gutter width while still finding the
decision boundary. This is a constrained optimization problem.

• The problem with linear support vector machines – how to handle nonlinear separability by
kernel transformations (which kernels and why). The standard kernels are: linear (

• The dot product trick: we can’t compute kernel, but we can compute dot product under
kernel anyway

Example applications
 •Isolated handwritten digit recognition
•Object recognition
•Speaker identification
•Charmed quark detection
•Face detection in images
•Text categorization

Input to SVM: a set of labeled sample points, measured along some # of features
Output from SVM: A decision boundary and a set of weights. Each sample feature will be given
a weight α. If the weight is 0, it doesn’t enter into decision boundary. If a feature weight it is
positive or negative, it does determine in part where the decision boundary goes and the weight
magnitude gives the relative contribution of that weight to the optimal decision boundary. The
exact shape (line, curve, etc) of the decision boundary will depend on the kernel transform chosen.
The actual output from the SVM is the normal, w, to the decision boundary, and is defined as:

i ii
y xα= ∑w

where α are a set of weights, nonzero for the support vectors, a linear combination of the samples.
The intuition is that this is now a classifier that scores each (new) test data point by weighting it
with respect to the (weighted) distance each point is from the non-zero support vectors α. Positive α
“drag” the test point towards the positive side of the fence; negative α drag points towards the
negative side of the fence.

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3
We shall show that one can find these weights just by using the dot product xixj and this does not
depend on xi in any other way. The search in the weight space will have just one maxima (minima),
so we are guaranteed to win (it is a quadratic programming problem). This will also turn out to be
the best we can do.
Here is an example to illustrate SVM decision boundaries, margin, and positive and negative

support vectors. We want to maximize the margin, with as few mis-classification errors as possible.

Now the questions we can ask are:

• What shape can the decision boundary be?
• How do we find this shape and position so as to maximize ‘street’ or margin width?
• How can an SVM fail? (how do we dodge overfitting?)

In a more general (linear) case, the picture looks like this:

Recall that we had a linear example like this: the perceptron. A typical problem: Find a,b,c, such
that:

ax + by ≥ c for red points
ax + by ≤ c for green points

In general, there can be many such a, b, c ! How can we find the optimal one? Well, what is
optimal? We want to use as few features as possible (as few parameters – smallest theory, Occam’s
razor), while making as few mistakes as possible (Einstein: a theory should be as simple as possible,
but no simpler). SVMs solve this in a principled way – by formulating an optimization problem,
rather than greedy search.

Definitions
• Let the set of n training examples (xi,yi) where xi is the feature vector and yi is the target output

(pattern). Let yi = +1 for positive examples and y = -1 for negative examples. Assume (for now) that the
patterns are linearly separable
• Define the hyperplane H such that:

xi•w+b ≥ +1 when yi =+1
xi•w+b ≤ -1 when yi =-1

Support vector, negative
example, value ≤ -1 for
test points

Support vector, positive
example, value ≥ +1 for
test points decision boundary

}Margin, gutter

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3
 Now we can use the following picture.

H1 and H2 are the planes:

H1: xi•w+b = +1
H2: xi•w+b = -1

The points on the planes H1 and H2 are the Support Vectors. We represent a line via the normal w and the
distance from the origin, b.
d+ = the shortest distance to the closest positive point
d- = the shortest distance to the closest negative point
Note that we are now penzalizing bad points (because for red points that are on the wrong side of the line,
ax+by-c
The margin of a separating hyperplane is d+ + d-. = the distance between H1 and H2. We want a classifier
with as wide a margin as possible. Let us define this as an optimization problem. Recall the distance from a
point(x0,y0) to a line Ax+By+c = 0 is:
 |A x0 +B y0 +c|/ √(A2+B2)

The distance between H and H1 is:
 |w•x+b|/||w||=1/||w||

The distance between H1 and H2 is:
 2/||w||

So, if we want to mazimize the distance between H1 and H2, then we should minimize ||w|| with the
condition that there are no datapoints between H1 and H2, i.e.,
 xi•w+b ≥+1 when yi =+1

xi•w+b ≤ -1 when yi =-1 or, combining these two equations:
 y (xi•w) ³ 1 or () 1 0i iy x b+ − =wi
This is a constrained optimization problem, and is well-known to be solvable for this linear case as a
quadratic programming problem by the method of Langrange multipliers. With this approach, we can show
that one can minimize ||w|| or, equivalently, because it will make the math work out, ½||w||2 , along with the

d

d

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3
constraint that () 1 0i iy x b+ − =wi . In general, we have

 (,) () () a function of variablesi ii
L x f x g x n mλ α= + +∑

 for the ' , for the . Differentiating gives equations, each set to 0.n x s m n mα +
Why do we do this differentiation of L to solve the problem? As usual – to find a maximum (minimum).
Intuitively (see the slides), with the derivative set to 0 we are at the tangent of both the weight function f and
the constraint curve g. At this point, a possible solution point, the normals (perpendiculars) to f and g are
both parallel. The partial derivatives wrt x recover the parallel normal constraint; the partial
derivatives wrt α recover the g constraint

In our case, f(x): ½|| w||2 ; g(x): yi(w.xi +b)-1=0 so the Lagrangian is
 L= ½|| w||2 - Σi αi[yi(w.xi +b)-1] where the αI are the ‘Lagrange multipliers’.
 Recall that w = Σi αiyi xi

What do the multipliers alpha mean? Intuitively, each αI is the rate at which we could increase the
Lagrangian if we were to raise the target of that constraint (from zero). But remember that at
solution points p, L(p,λ)=f(p). So the rate of increase of the Lagrangian with respect to that
constraint is also the rate of increase of the maximum constrained value of f with respect to that
particular constraint. Note that in our special problem, the alphas also turn out to be the weights –
how much each point contributes to pulling apart the margin – so, this makes sense: the alpha is
zero if a point does nothing, and is positive or negative corresponding to its ‘tug’ on the gradient at
the decision boundary.

Intuition: think of the constraint g(x,y)=0 as a curve in 2-space. We travel along this constraint curve
looking for the spot where f(x, y) is maximized (hence derivative is zero).

What is the partial of L wrt w?

 0 or i i i i i i
L y x y x
w

α α∂
= − = =

∂ ∑ ∑w w

Plugging this back into the formula for L and using the other derivative set to zero, plus some algebra (we
won’t show this here) yields the revised (dual) optimization problem to minimize:

 1 ()
2i i j i j i j

i j

y y x xα α α−∑ ∑∑

Note that this all boils down to saying that we want to find the best αι using the dot product between the
two sample points xi• xj. But in this form, all we compute is the dot product, we don’t need the
training data in any other way. So the dot product is important in finding the support vectors.

The use of the dot product makes sense as a measure of similarity. Recall that the dot product is the cosine of
the angle between two vectors. If two vectors x1, x2 are identical, then their dot product is 1; if they are
completely different, or orthogonal, then their dot product is 0.

The output from this optimization will be the alpha weights that define the decision boundary. Thus, we
will also use the dot product in testing: we use them to figure out which side of the boundary line an
unfamiliar point is.
Are we done?
No. Many patterns are not linearly separable! What do we do? We map the original space to a
new space, via a function Φ. Then we use a different dot product, called a kernel K to separate out

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3
the regions linearly in a (higher dimension, transformed) space. Since it is only this dot product
we need, we never need to compute Φ explicitly!
 () () (),i j i jK = Φ ⋅Φx x x x

This doesn’t say how to find such a K – but we already know some that we can use (we have
already used one!) Examples:
Consider the function ()2x a b x ab− + + . This looks like the following, so it’s not linearly
separable.

BUT if we apply the transform { }2 ,x x x6 then this ‘straightens out’ the curve. Note that the only change

to the optimization problem is from this:
 ()1

2
,

i i j i j i j
i i j

L y yα α α= −∑ ∑ x xi

to this:
 ()1

2
,

,i i j i j i j
i i j

L y y Kα α α= −∑ ∑ x x

Besides the regular dot product, the the most commonly used transforming dot product is one you’ve already
met before? Can you guess? It is () (), tanhK κ δ= ⋅ −x y x y (i.e., the sigmoid!) The other commonly
used dot products are polynomial functions (as above), gaussians, and radial basis functions. Each ‘warps’
the higher dimensional space so as to linearize it (it is a remarkable result of mathematics that any function
can be linearly separated in this way – if we map it into a high enough space. We give a picture of what the
Gaussian transform ‘does’:

6.034 Artificial Intelligence, Recitation 11, November 14 & 15, 2003 3

The (kernel) equation for a Gaussian is () { }2

22, expK σ
−= − x yx y .

Note that we can ‘twiddle’ the spread of each Gaussian by increasing or decreasing sigma, but this
is usually given a priori. We can also twiddle the x-y difference, which yields a peak at a different
location. Note that superimposed basis functions like these are radial basis functions (because
when flattened they are concentric circles).
Summarizing: Key ideas here
–Nonlinear mapping of an input vector into a high-dimensional feature space that is hidden from both the
output and the input
–Construction of an optimal hyperplane for separating the features discovered in step 1, using Langrangian
method
Output is the SVMs, the weights corresponding to the support vectors.

•

x x

x
x

x

x x

ϕ (o)

X F

ϕ

ϕ (x)
ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)

ϕ (x)
ϕ (o)

ϕ (o)

ϕ (o)

ϕ (o)
ϕ (o)

ϕ (o)

o
o

o
o o

o

