MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.034 Artificial Intelligence, Fall 2003
Recitation 8, October 23™ & 24™ | 2003

How to do things with Words Prof. Robert C. Berwick
Agenda
1. Jumping the nets (everything you ever wanted to know about semantic transition trees, but
were afraid to ask)
2. Transition frames, trajectory frames: multiple representations for language

3. Is any of this stuff real?

1. Jumping the nets. A semantic transition tree (STT) is simply a linear branching pattern, perhaps recursive, that
spells out possible linear sequences of word classes, where the classes are based on semantic properties like size,
weight, type of object (book, weapon,...), etc. We add ‘semantic translation’ or ‘meaning processing’ by
attaching a semantic action routine to the end of the linear pattern. Thus each pattern can be thought of in the
form of a pair (syntactic-pattern, semantic-translation) and whatthe STT does is to map or
translate a string in some input language, say English, into some output language, say, a database query; a
transition frame; or anything at all.

To build an STT suppose for instance that one had to write a pattern for examples such as, “What size is the
M16”; “What size is the uzi”; “what type is an uzi’; What type is the m16”. These can be abstracted into a single
network that looks like the following. We leave constant words alone, they must be detected exactly as they
appear in the input; we combine strings of words that appear in the same position (the books, weapon size, ...)
into classes (here denoted by brackets):

What {size | type } is {thelan} {m16 | uzi}
Next we replace the brackets with subroutine calls to other STTs, standing for the classes:

What ?noun-groupl is ?noun-group2

We must build an STT for noun-groupl. (It is the same as ?noun-group2, but because of inelegance in the STT
implementation for Pset3, we have to distinguish it — its role, hence its semantic translation, must be different.) Let’s
try this (exercise).

Finally, we must add a semantic translation or output mapping at the end of each pattern, in this case, a piece
of a complete db query For instance ‘the size’ is mapped to * (size = ,w-size), where w-size isthe
evaluation of the actual value pulled from a db, while ‘the uzi’ is mapped to ° (weapons = , ?weapons) where
?weapons will evaluate to ‘uzi’. The output translation pastes both of these together as returned from the
subroutine calls to form the complete query, e.g., (get db (w-size uzi)).

Since any output mapping can be produced, such a system can in general map any strings (describable by the STT
formalism) to any other strings. The 3 next problems in the Pset are aimed to get you to realize this, and have you gain
familiarity with a more recent and justifiable representational system for language ‘meaning’ called event structure.
Event structure is in fact made up of several different subrepresentations: we cannot describe what a sentence ‘means’
by a single, unified representation. First, the event is centered around an action — the verb (is this always right?). So
we might start out by writing an event representation for ‘Mary killed the spider’ as (kill... But there is more to it.
The event structure includes information about causal relations, motion (physical or not), and actors in the action. In
short, it must include enough info to answer questions, make inferences, etc. So we need at least:

1. One kind of event subrepresentation is like a ‘mental snapshot’ picture — who did what to whom. Winston
calls this a thematic representation. Here you identify the main ‘players’ in a sentence — in the ‘kill’
sentence, Mary and the spider. ‘Mary’ is the agent, while ‘spider’ is the affected object or beneficiary.

2. A second subrepresentation is a trajectory frame: motion along a path, with beginning and end states, as
with prepositions, ‘into the bucket’, ‘along the road’.

3. A third subrepresentation is (state) transition frames, here, the increase/decrease of quantities (transition
frames)

Let us first see how to write simple transition frames and then trajectory frames.

2. Transition frames. These indicate changes in some state variable over time. So, another way to look at them
is as a table like the following, where a row is the name of a state variable, and the columns indicate clock
ticks, t1, t2, t3, etc. The entries are one of 10 possible ‘changes’: change, not change; increase, not increase;

6.034 Artificial Intelligence, Recitation 8, October 23-24, 2003 2
etc. Let’s try this for the example “The Army grew larger before declining and then reached a constant size
before disbanding”. There are 3 ‘changes’, so 4 columns in the table, and one variable ‘value’:

Timel | Time2 | Time3 | Time4

Size army

3. Trajectory frames.
Finally, we want to be able to map input sentences into output trajectory frames. To do this, we write an STT
that admits possible English-like trajectory patterns, and then outputs a trajectory representation (instead of
the db representation). Let’s take a look at the partial trajectory STT in the Pset handout to see what it is
doing. We want as output an event structure, e.g., (1) the main verb followed by (2) the object, then (3) the
set of paths. For example, (go ball (path (to place table)) . Note thata path couldbe a sef of
paths: e.g., apath could be (path (from (place on table)) (path (to (place in
basket))) . NOTE that this form for trajectories is defined for you — you must follow it by stipulation.
The job of your STT is to output this form. The main place this is done is in the line labeled ‘trajectory’
below, where, after the %end statement, you are to fill in the ‘template’ that in fact spits out this form. So, it
should be clear what three expressions, and in which order, the three blank spots should be filled in with:
those forms that will

(define trajectory-trees
' ((?sentence ((?trajectory %end ?trajectory))

((?path %end ?path))

((?thing %end ?thing)))
(?trajectory ?thing ?goverb ?path %end " (, , ,))
(?path ((?path-element ?path %$end)

(?path-element %end 'fill-me-in)
($end 'fill-me-in)))
(?path-element (?path-preposition ?place %end ~ (,)))
(?place ((?thing %end 'fill-me-in)
(?place-preposition ?place %end 'fill-me-in)))
(?path-preposition ((out of %end 'outof)
(from %end 'from)
(via %$end 'wvia)
(through %end 'through)
(toward %end 'toward)
(to %$end 'to)
(into %end 'into)
(off of %$end 'offof)
(across %end 'across)))
(?place-preposition ((above %end 'above)
(below %end 'below)
(at %$end 'at)
(by %end 'by)
(on %$end 'on)
(in %end 'in)
(under %end 'under)
(over %end 'over)
(near %end 'near)))
(?thing ((?determiner ?thing %end ?thing)
(troops %$end 'troops)
(enemy %end 'enemy)
(baghdad %end 'baghdad)
(mosul %$end 'mosul)
(tikrit %$end 'tikrit)
(offensive %$end 'offensive)
(airsupport %end 'airsupport)
(bullets %end 'bullets)))

6.034 Artificial Intelligence, Recitation 8, October 23-24, 2003
(?determiner ((a %end #f) (an %end #£f) (the %end #£)))
(?goverb ((go %end 'go)
(advance %end 'advance)
(retreat %$end 'retreat)))))

