
1

Lecture Outline
(0) General remarks on learning; training vs. testing

(1) Learning as remembering, v. 1: à la recherche du
temps perdue

• K Nearest Neighbor (KNN) classification
• Strengths & Weaknesses
• Applications

(2) Learning as remembering, v. 2: pinball
• Decision trees
• Terminology & Goals
• Algorithms
• Using a Decision Tree
• Building decision trees (training)
• Strengths & Weaknesses

• Definition of classification problem: Learn a function that
assigns an example to one of several predefined classes

• Training Set: we aim to proceed from individual cases to general
principles - learning from examples

• Learning / Search Algorithm (e.g. Rule inducer, Decision Tree
generator, Neural Net weight adjuster): These search for the best
descriptions of each concept (class).

• Knowledge Representation (e.g. set of rules, Decision Trees)

• Test set: we aim to check our ‘model’ against new data
• Different ways of doing this: cross-validation; hold-out

• Overfitting & Underfitting – how well does model perform?

Components of Automated Learning Methods
(Classification Algorithms)

2

2

The general picture for fitting – how well does
the model do against testing?
There are two ways to lose!

underfit

overfit

Overfitting

• Overfitting means that the model performs poorly on
new examples (e.g. testing examples) as it is too
highly trained to the specific (non-general) nuances
of the training examples.

3

Underfitting

• Underfitting means that the model performs poorly
on new examples as it is too simplistic to distinguish
between them (i.e. has not picked up the important
patterns from the training examples)

Learning and Using Rules

Automated Knowledge
Acquisition Program

(e.g. rule inducer,
decision tree algorithm)

Training Data

IF-THEN rules

Rule-Based System
(Knowledge Base +
Inference Engine)

New Data

Predictions /
Classifications

Aim is to avoid the
manual knowledge

acquisition bottleneck!

4

(1) Learning as Remembering: Case-
Based Reasoning (CBR)

• People often take into consideration past experiences in formulating
solutions to new problems. When handling a new problem one might
think of earlier cases when similar situations happened, and use the
previous solution as a starting point that can be adapted to the new
situation.

• The intention of CBR is to solve problems by analogy or
resemblance: it is often called analogical or experiential reasoning,
‘instance-based representation’, ‘instance-based learning’, or
‘memory-based learning’.

• That is, keep a database of past cases (problems and their
solutions). When presented with a new problem, find similar cases
from the past using some relevance (distance) criterion, and use
(an adaptation of) the solutions for the relevant historic cases that
resemble the new case.

• Notice that this process can easily be applied to classification tasks:
the ‘problem’ is the example’s attributes, and the ‘solution’ is the
assigned class.

The CBR Process

New
Problem
Input

Case
Retrieva

l

Similarity
Metrics
(Distance
Metrics)

Historic
Case

Library

Case
Adaptation

Solution
Adaptation
Methods

Test
Solution

Conclusion

1. Find relevant cases in storage that have solved problems similar
to the current problem (use similarity metrics).

2. Adapt the previous solutions to fit the current problem context.

5

Stages in CBR
1. Knowledge representation

Decide how to represent cases: attribute selection and
transformation

2. Case building
Build a repository of cases (a ‘case base’), ideally sampling
many regions of the search space

3. Case comparison and retrieval
Compare a probe (i.e. new example) with the case base and
retrieve the relevant cases

4. Adaptation
Modify previous solutions to account for the current scenario

5. Learning
Learn with new cases, learn the importance of attributes, etc.

Cases

10

In CBR, a case consists of
• the attributes of the problem situation
• the attributes of the solution / outcome.

(Note that the solution may have been a success or a failure - we
can learn from both)

For a bridge construction
company, a case
may look like this

Problem attributes
number of lanes, deck type,
length, etc.

Solution attributes
cost, vibration, quake-resistance, etc.

6

Looking up Similar Cases
• We can look up similar cases using a distance metric.
• The distance metric can be, for instance, simple Euclidian distance or

weighted Euclidian distance. The Euclidian distance d(X,Y) between
two points, X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) is:

∑
=

−=
n

i
ii yxYXd

1

2)(),(

• We then pull out items
from the database who
distance from our
example is below
some threshold

Difference between
Database Querying and CBR

• Regular database queries pull out only items that match certain
criteria.

• CBR queries, sometimes called ‘probes’, pull out items that are
similar to our criteria, even if they don’t match exactly. CBR queries
rank or grade items pulled by similarity.

• Regular queries return historic facts, unaltered.
• CBR queries return a proposed solution that has been adapted from

past solutions to fit the current situation

7

Some Issues with Euclidian Distance
• Using our bridge example, take a subset of the attributes:

(vertical clearance, number of lanes)
• Now, take two cases of bridges in our database:

Bridge 1: (50ft, 3 lanes)
Bridge 2: (75ft, 2 lanes)
Using simple Euclidian distance:

• Notice that this is a poor distance metric as vertical clearance is
having too much influence. We need to scale our numeric attributes
so that we have a notion of relative distance (discussed in our
lecture on data transformation)!

• Notice that usually not all attributes are equally important, so
some weighting of attributes may be appropriate. Taking wi as the
weight for attribute i, our distance metric becomes:

• Finally, notice that categorical attributes are trickier to deal with.
(See next slide for strategies).

∑
=

−=
n

i
iii yxwYXd

1

2)(),(

626)23()7550()2,1(22 =−+−=BridgeBridged

Some Issues with Euclidian Distance
To summarize, some issues with simple Euclidian Distance
are:

• Scaling of values
• Distances should be relative, not absolute. Since each

numeric attribute may be measured in different units, they
should be standardized to have mean of 0 and variance 1.

• Weighting of attributes:
• Manual weighting: Weights may be suggested by experts
• Automatic weighting: Weights may be computed based on

discriminatory power or other statistics.
• Treatment of categorical variables

• Various ways of assigning distance between categories are
possible.

8

Adapting Solutions
• Because the new problem is seldom exactly the same as the old one,

the old solution usually needs to be adapted a little to fit the new
problem

• Adaptation techniques include:
• Predefined formulas or processes for adapting the solution
• Interpolation: Assuming, you had two old bridges

Bridge 1 = 2 lanes, and cost $1 million
Bridge 2 = 4 lanes, and cost $2 million
Now, assuming you wanted a new 3 lane bridge, you might
regard it as similar to the 2 lane and the 4 lane bridges,
and estimate its cost at:

($2m+$1m)/(4 lanes+2 lanes) x 3 lanes =
$0.5m per lane x 3 lanes = $1.5 million

• Extrapolation: This is similar to interpolation, except the new
example is outside the bounds of previous cases, and therefore
guesses may be less reliable. Assuming a new 6 lane bridge we
might guess its cost at:

($0.5m per lane x 6 lanes) + $0.75m contingency = $3.75m

Strengths of CBR

16

• Accuracy improves over time: Incremental learning from past
experiences. As new problems arise and are solved, you add them to
the case base with their solutions, thereby improving the accuracy of
your predictions the next time.

• Low dependence on experts: Unlike rule-based expert systems,
you do not need to take the time of experts to capture problem-
solving rules, as CBR solves problems based on past experience.
(Expert knowledge may of course be helpful for computing distance
metrics and deciding on solution adaptation techniques though).

• Some answer may be better than no answer: Whereas rule-based
expert systems cannot give a prediction for cases not covered by the
rules, CBR can find previous situations that were close and can then
guess at something.

9

Weaknesses of kNN-CBR
• CBR and KNN are ‘lazy’ approaches: they do not construct a model

in advance, but rather wait till they have to classify a new example.

• Contrast this with ‘eager’ approaches like rule induction and decision
trees which construct meaningful symbolic descriptions of classes
from the training set and use those models for classification.

• With high-dimensional data, a case may not have any other cases
near to it. Selecting a subset of relevant attributes (attribute
selection) may help with this.

Applications of CBR
• Medicine / 911: Find which diagnosis was made for similar

symptoms in the past, and adapt treatment appropriately
• Customer Support (HelpDesk): Find which solution was proposed

for similar problems in the past, and adapt appropriately (e.g.
Compaq’s SMART/QUICKSOURCE system)

• Engineering / Construction: Find what costing or design was made
for projects with similar requirements in the past, and adapt
appropriately

• Law (Legal Advice): Find what judgment was made for similar cases
in the past (‘precedents’), and adapt appropriately

• Network Monitoring: Determine whether to cut off a new network
session based on bandwidth and network usage attributes, compared
to past permitted and prohibited sessions. e.g. David Parish’s CBR
system for blocking game-player traffic.

• Web-searching: Search engines track which sites have been useful
to people who searched on particular keywords in the past, and rank
those highly for new searches.

• Audit and Consulting Engagements: find similar past projects
• Insurance Claims Settlement: find similar claims in the past
• Real estate: Property price appraisal based on previous sales

10

K Nearest Neighbors (KNN)
K-Nearest Neighbor can be used for ‘memory’ based

classification tasks.

• Step 1: Using a chosen distance metric, compute the
distance between the new example and all past
examples.

• Step 2: Choose the k past examples that are closest to
the new example.

• Step 3: Work out the predominant class of those k
nearest neighbors - the predominant class is your
prediction for the new example. i.e. classification is done
by majority vote of the k nearest neighbors.

Example – see applet demo

11

K-Nearest Neighbor (KNN)

21

Assume a new example X (at the center of the circles below). Notice
that:

• With a 3-Nearest Neighbor classifier (inner circle), X is assigned
to the majority Class B, whereas

• With an 11-Nearest Neighbor classifier (outer circle), X is
assigned to the majority Class A.

Class A

Attribute B

Class B

Attribute A

XX

Adaptations of
Simple K Nearest Neighbor (KNN)

(Source: Dhar and Stein.)

Adaptations:

• You might weight the
votes of each neighbor
based on their
distance: closer
neighbors count more.

• You might weight
attributes by
importance.

In the example, assume
we are looking for the 1
nearest neighbor to the
new example A. In the top
diagram, with equal
attribute weights, B is
closest to A. However,
when we stretch the x-axis
and give number of lanes
more weight, C is closest
to A (because number of
lanes has greater
influence on distance).

12

• CBR and K-Nearest neighbor often work well for classes that are
hard to separate using linear methods or the splits used by decision
trees.

• K-Nearest neighbor works well even when there is some missing
data

• K-Nearest neighbor is good at specifying which predictions have low
confidence

• No training phase is required: it is a ‘lazy’ evaluation approach

Strengths of CBR and K-Nearest Neighbor

Class A

Attribute A

Attribute B Class B
Class C

Class D

Issues:
• How to choose k ? Do we use 1 nearest neighbor, 10 nearest

neighbors, 50 nearest neighbors ?
• Computational cost: For a large database, we’d have to compute

the distance between the new example and every old example, and
then sort by distance, which can be very time-consuming. Possible
resolutions are:

• sampling: store only a sample of the historic data so that you
have fewer distances to compute. Sample selection will still be
a problem. Assuming you do use a sample, choosing an
unbiased sample may be hard. A typical approach is to choose
prototypical examples of each class in the case base.

• boxing: create boxes that enclose clumps of examples that are
in the same class. You can then store the box’s center and
dimensions, rather than storing every example in the box. New
examples within the box are taken to be in the class associated
with the box. New examples outside a box are classified using
the regular nearest neighbor approach. Box generation is still a
problem, as you must decide on the size and number and
weighting of boxes, and the concentration of items within boxes.

Problems with K Nearest Neighbors (KNN)

13

(2) Decision tree Outline

25

Decision Trees:
• Terminology & Goals
• Algorithms
• Using a Decision Tree

• Classifying a new example
• Reading the rules off a tree

• Building a Decision Tree (Training the Model)
• Choosing the best split: Measuring impurity (heterogeneity)
• Stopping criteria

• Weaknesses
• Axis parallel splits
• Overfitting & Underfitting

• *Pruning (NOTE: * means optional material!!!)
• *Variations

• Regression Trees
• Model Trees

Terminology
A Simple Decision Tree Example:

Predicting Responses to a Credit Card Marketing Campaign

26

Income

Debts

Gender

Children

Root node

Nodes

Leaf nodes

Branch / Arc

Responder

Non-Responder

Non-Responder

Low

Female

High

Low

High

Male

Many

Few
This decision tree says that people
with low income and high debts,
and high income females with
many children are likely
responders.

Non-Responder

Responder

14

Using a Decision Tree
Classifying a New Example

for our Credit Card Marketing Campaign

Income

Debts

Gender

Children

Responder

Non-Responder

Non-Responder

Low

Female

High

Low

High

Male

Many

Few

Assume Jack
has high income.

The tree predicts
that Jack will not

respond to our
campaign.

Feed the new example into the root of the tree and follow the relevant
path towards a leaf, based on the attributes of the example.

Non-Responder

Responder

Using a Decision Tree
Reading Rules off the Decision Tree

for our Credit Card Marketing Campaign

For each leaf in the tree, read the rule from the root to that leaf.
You will arrive at a set of rules.

Income

Debts

Gender
Children

Responder

Non-Responder

Non-Responder

Low

Female

High

Low

High

Male

Many

Few

IF Income=Low AND Debts=Low
THEN Non-Responder

IF Income=Low AND Debts=High
THEN Responder

IF Income=High AND
Gender=Female AND
Children=Many
THEN Responder

IF Income=High AND
Gender=Female AND
Children=Few
THEN Non-Responder

Non-Responder

Responder

IF Income=High AND Gender=Male
THEN Non-Responder

15

So, 2 parts:

• Building Decision Trees

• Using Decision Trees

•See demo at:
http://www.cs.ubc.ca/labs/lci/CIspace/Version4/dTree/

Users of Decision Trees aim to classify or predict the
values of new examples by feeding them into the root of
the tree, and determining which leaf the example flows to.

• For categorical outputs (classification): The leaves
of the tree assign a class label or a probability of
being in a class

• For numeric outputs (prediction): The leaves of the
tree assign an average value (‘regression trees’) or
specify a function that can be used to compute a
value (‘model trees’) for examples that reach that
node.

Users of Decision trees may also want to derive a set of
rules (descriptions) that describe the general
characteristics of each class.

Goals
Using Decision Trees

16

Goals
Building Decision Trees

Builders of Decision Trees aim to maximize the purity
(homogeneity) of outputs at each node. That is,
minimize the impurity (heterogeneity) of outputs at each
node.

• For categorical outputs (classification trees):
Achieve nodes such that one class is predominant at
each node.

• For numeric outputs (prediction trees): Achieve
nodes such that means between nodes vary as
much as possible and standard-deviation or
variance (i.e. dispersion) within each node is as low
as possible.

Decision tree methods are often referred to as Recursive Partitioning
methods as they repeatedly partition the data into smaller and
smaller - and purer and purer - subsets.

Recursive Steps in Building a Tree

• STEP 1:
Try different partitions using different attributes and splits to
break the training examples into different subsets.

• STEP 2:
Rank the splits. Choose the best split.

• STEP 3:
For each node obtained by splitting, repeat from STEP 1, until no
more good splits are possible.

Note: Usually it is not possible to create leaves that are
completely pure - i.e. contain one class only - as that would result
in a very bushy tree which is not sufficiently general. However, it
is possible to create leaves that are purer - that is contain
predominantly one class - and we can settle for that.

17

Better, as purity of sub-nodes
is improving.

Recursive Steps in Building a Tree
Example

STEP 1: Split Option A

Not good as sub-nodes are
still very heterogenous!

STEP 1: Split Option B

STEP 2: Choose Split Option B as it is the better split.

STEP 3: Try out splits on each of the sub-nodes of Split Option B.
Eventually, we arrive at: Notice how examples in a parent

node are split between sub-
nodes - i.e. notice how the
training examples are partitioned
into smaller and smaller subsets.
Also, notice that sub-nodes are
purer than parent nodes.

Building a Tree
Choosing a Split

• The criteria used to choose the best split are called feature
selection criteria.

• In C4.5, we choose the split that gives nodes with highest purity.
‘Information Gain’ (used by C4.5) is one possible measure of the
purity of nodes in a given split.

• Information gain is just one possible feature selection criterion.

• Most approaches to choosing a split are greedy: That is, they
choose the best split first, even if a worse initial split may have
resulted in an excellent eventual split. The reason for choosing
only the best split at each stage is the possible combinatorial
explosion of trying all possible splits. So, most decision trees
employ a greedy heuristic search which tries out some good-
looking partitions, rather than an costly exhaustive search which
tries out all partitions.

18

Building a Tree
Choosing a Split

Example
An example of applicants who defaulted on loans:

Few Medium PAYS
Few High PAYS

Philly
Philly

City
Philly
Philly

Children
Many
Many

Income
Medium
Low

Status
DEFAULTS
DEFAULTS

3
4

ApplicantID
1
2

Try split on Children attribute: Try split on Income attribute:

Children

Many

Few
Income

Low

High
Medium

Notice how the split on the Children attribute gives purer partitions.
It is therefore chosen as the first (and in this case only) split.

Building a Tree
Example

The simple tree obtained in the previous slide splits the data like this:

Applicant 3 Applicant 4

Applicant 1Applicant 2

Children

Many

Few

Income
Low Medium High

DEFAULTS

PAYS

Notice how the split is parallel to an axis - this is a feature of decision tree approaches!!

The best split

19

Building a Tree
Choosing a Split

Information Gain
• We will deal only with the Information Gain metric of purity

• A node is highly pure if a particular class predominates amongst
the examples at the node.

• ‘Information Gain’ measures the gain in weighted node purity (i.e.
reduction in impurity) as a result of choosing a particular split. By
weighted node purity, we mean that, when adding node purity metrics,
a node with few examples in has a lower weight than a node with
many examples in it.

• A highly impure sub-node is said to have high entropy (be highly
chaotic), because the examples at the sub-node are very
heterogeneous.

• In contrast, our goal is to obtain pure sub-nodes with low entropy,
so that the examples at each node of the split are very homogenous.

Building a Tree
Choosing a Split- Information Gain

• The term ‘information gain’ is used for those algorithms that compute
the amount of information needed to describe examples that have
reached a node.

• If the node is very heterogeneous (e.g. the probability of being in
any class is about equal) then even if if you knew the example
was at that node much information would be needed to
determine what class an example is in, because you couldn’t
easily guess the example’s class (consider if 50-50 split)

• If the node is homogenous (i.e. the probability of being in a
particular class is very high, because that class is predominant
at the node) then little information would be needed to
determine what class an example at that node is in, because you
would simply guess it was in the predominant class.

• The goal of the ‘information gain’-based algorithms is to reduce
the amount of information needed to determine an example’s
class as the nodes are split, and therefore maximize the
‘information gain’ as the nodes are split.

20

Entropy measures ‘how much info’ to
guess class membership

Entropy and logp p−
This is a component of the entropy formula (where p is the probability of
an example being in a particular class at a particular child node). But why
choose a formula like this as a component of the measure of entropy
(impurity)? Well, notice how -p.log(p) varies for values of p between 0
and 1:

-p.log(p)

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

-p
.lo

g(
p)

Notice how -p.log(p) tends to 0 for p close to 0 and for p close to 1. That is,
notice how -p.log(p) tends to 0 for purer nodes

(i.e. nodes that have little of one class or lots of one class).

Building a Tree
Choosing a Split

Calculating the Information Gain of a Split

1. For each sub-node (i.e. subset) produced by the split, calculate
the entropy of that subset.

2. Calculate the weighted entropy of the split by weighting each
sub-node’s entropy by the proportion of training examples (out
of the training examples in the parent node) that are in that
subset.

3. Calculate the entropy of the parent node, and subtract the
weighted entropy of the child nodes (i.e. sub-nodes) to obtain
the information gain for the split.

The next few slides give examples of steps (1), (2), and (3) above.

21

Building a Tree
Choosing a Split

(1) Entropy of a Subset

Each split produces a number of subsets (sub-nodes). Each subset
contains examples, and each example is in one of many classes.

Entropy (‘information needed’) is a measure of impurity of a subset:
i.e. entropy measures the dispersion of examples

in the subset between different classes.

The lower the entropy the lower the impurity
(i.e. low entropy = high purity).

)log(___ i
i

i ppsubsetaofEntropy ∑ −=

i is the number of classes in the subset being evaluated and pi is
the probability of an example being in the class i in this subset.

Building a Tree
Choosing a Split

(2) Weighted Entropy in a Split

42

))((____ jEpsplitainentropyWeighted
j

j∑=
j is the number of sub-nodes (i.e. subsets) in the split.
pj is the proportion of training examples that go down each branch
(i.e. from the parent node towards each subset) in the split.
E(j) is the entropy of subset j (i.e. entropy of each sub-node j) as
calculated in the previous slide.

Classic ID trees use entropy (chaos) to measure the purity of
each subset (sub-node) produced by a split,

and then weights this purity according to the size of the subset.

22

Building a Tree
Choosing a Split: Worked Example

Entropy

Split on Children attribute:

(1) Entropy of each subnode

Children

Many

Few

(2) Weighted entropy of this Split Option:

() () 004
204

2_____ =×+×=ChildrenonsplitofentropyWeighted

() () 02
2log2

2
2

0log2
01___ =−−=subnodeofEntropy

() () 02
0log2

0
2

2log2
22___ =−−=subnodeofEntropy

Probability of being in class at this node
Probability of being in class at this node

Proportion of examples in Sub-node 1
Entropy of Sub-node 1

Building a Tree
Choosing a Split: Worked Example

Entropy

Split on Income attribute:

(1) Entropy of each subnode

(2) Weighted entropy of this Split Option:

() () () 5.004
114

204
1_____ =×+×+×=IncomeonsplitofentropyWeighted

() () 01
1log1

1
1

0log1
01___ =−−=subnodeofEntropy

() () 01
0log1

0
1

1log1
13___ =−−=subnodeofEntropy

Income

Low

High
Medium () () 12

1log2
1

2
1log2

12___ =−−=subnodeofEntropy

Proportion of examples in Sub-node 2
Entropy of Sub-node 2

Probability of being in class at this node
Probability of being in class at this node

23

Building a Tree
Choosing a Split: Worked Example

(3) Information Gain of Split Options

Children

Many

Few
Income

Low

High
Medium

Weighted entropy of this
Split Option (Split on Income) =

0.5 (calculated earlier)
Information Gain = 1 - 0.5 = 0.5

Notice how the split on Children attribute gives higher information
gain (purer partitions), and is therefore the preferred split.

Weighted entropy of this
Split Option (Split on Children)

= 0 (calculated earlier)
Information Gain = 1 - 0 = 1

() () 14
2log4

2
4

2log4
2___ =−−=nodeparentofEntropy

Properties of Entropy
From a previous slide, you may have been wondering why -p.log(p) on its
own doesn’t have a maximum at 0.5 (i.e. where, for 2 classes, there is
maximum impurity at a particular node) ? Well, remember that the
formula for entropy of a subset is not just -p.log(p), but rather the sum of
-pi.log(pi) for all i classes in the subset! Notice that, assuming we had 2
classes in a subset, this would effectively give us:

Entropy = -p.log(p)-((1-p).log(1-p))
where p is the probability of class A in the subset and therefore (1-p) is the
probability of class B in the subset. We’ve graphed this below - notice
how this does in fact have its maximum at p=0.5 (highest heterogeneity) -
that is, while -p.log(p) is not maximized at 0.5 for a particular class in a
subset, entropy (which is the sum of -pi.log(pi) for all i classes in the
subset) is at a maximum at 0.5.

Note that in general,
for the n-class case,
entropy has a maximum
whenever the proportion
of all n classes in the
subset is equal !

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

-p.log(p)
-(1-p).log(1-p)
(-p.log(p))-((1-p).log(1-p))

24

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

-p.log(p)
-(1-p).log(1-p)
(-p.log(p))-((1-p).log(1-p))

See demo at
http://www.cs.ubc.ca/labs/lci/CIspace/Version4/dTree/index.html

Properties of Entropy
Entropy is actually measured in units called ‘bits’, which are the same
as the bits we know of from computer science.
For a 2-class problem, a subset that contains both classes in equal
proportion has entropy:

For a 4-class problem, a subset that contains all 4 classes in equal
proportion has entropy:

Remember that entropy is the ‘information needed’ to specify which
class an example in a given subset is in. It is logical that for a subset
with 2 classes in equal proportion you would need 1 bit (having value
either ‘0’ or ‘1’ to specify which of the 2 classes an example is in).
Similarly, for a subset with 4 classes in equal proportion you would
need 2 bits (having values either ‘00’, ‘01’, ‘10’, or ‘11’ to specify
what class an example is in.)

() () bitsubsetofEntropy 12
1log2

1
2

1log2
1__ =−−=

() () () () bitssubsetofEntropy 24
1log4

1
4

1log4
1

4
1log4

1
4

1log4
1__ =−−−−=

25

Building a Tree
Choosing a Split

Information Gain
• Note that comparing the entropy between split options and

choosing the lowest entropy is insufficient !

• Why ? Because we also want to make sure that entropy
(i.e. impurity) decreases from layer to layer as we move
down (from root to leaves) in the decision tree ! If entropy
is increasing then the tree is getting worse, so we wouldn’t
want to make the split !

• Thus we only choose to split if there is an information
gain (i.e. decrease in entropy/chaos) as a result of the
split !

Building a Tree
Stopping Criteria

You can stop building the tree when:

• The impurity of all nodes is zero: Problem is that this
tends to lead to bushy, highly-branching trees, often with
one example at each node.

• No split achieves a significant gain in purity

• Node size is too small: That is, there are less than a
certain number of examples, or proportion of the training
set, at each node.

• Note: there is seldom one ‘best’ tree but usually many
good trees to choose from.

26

Building a Tree
Information Gain Example

Source: Dhar and Stein

Note: Dhar and Stein’s ‘Impurity’ here is actually the weighted entropy of the subset.
Also, their diagram shows information gains from level-to-level in the tree, rather than information
gains for particular splits (which is what we need to decide which split is best) !

27

Weaknesses
of Decision Trees

• Handling of continuous data: bins may introduce bias
• Splits are simple and not necessarily optimal
• Rules produced may not be intuitive to humans
• Axis-Parallel Splits
• Overfitting
• Underfitting

Source: Dhar and Stein

Notice how the error rate on
the testing data increases for
over-large trees.

Weaknesses
Splits are simple and not necessarily optimal

• Simple splits only: Complex, multi-attribute feature selection criteria
(e.g. for groups of variables combined by functions) are not
supported as the computational cost of this would be too high. Most
trees can only compare attributes to constants (e.g. ‘income > 10’),
and cannot compare attributes to other attributes or other functions of
attributes (e.g. ‘income > (age * $1,000)’).

• Potentially sub-optimal splits:
• As it is computationally expensive to evaluate all possible splits, decision

trees only look for the best splits at each stage, and continue splitting on
those. This ‘greedy’ approach may miss trees where the first splits
high up near the root seem at first to be poor, but the final splits low
down near the leaves are extremely good.

• Furthermore, some decision tree approaches do not consider the cost
of various types of misclassification errors, which may affect which
the best tree is. For example, if the cost of predicting that someone is a
credit-risk when they are not is $100, but the cost of predicting that they
are not a credit-risk when they are is $1,000 then our model should be
adjusted to weight the latter type of error more highly.

28

Weaknesses
Rules produced may be unintuitive to humans

• Often decision trees (and other learning methods) produce rules that
are correct but not easily comprehensible to humans.

• Breiman demonstrated this with rules produced to read an LED (Light
Emitting Diode) display: the machine learning algorithm suggested
that the number ‘1’ is read if top-center, middle-center, and top-left
diodes are off. In contrast, humans typically read the number ‘1’
when the top-right and bottom-right diodes are on, and all others are
off. The machine-learned rules are correct, but cryptic.

Machine-Learnt Rules
for reading a ‘1’

Human-Learnt Rules
for reading a ‘1’

= off

= on

= don’t care

Weaknesses
Axis-Parallel Splits

• Decision trees can’t capture
structures like: y = x1 + 4x2

• Some data sets aren’t well modeled with
axis-parallel splits - e.g. they may be better
modeled by drawing curves around the data (e.g. using a technique
such as support vector machines).

Source: Dhar and Stein

Split 1 (3 errors)

Split 2 (1 error)

Split 3
(1 error)

Curves with no errors

Total errors for this
decision tree = 5 errors !

29

Weaknesses
Overfitting

Overfitting means that the model performs poorly on new
examples (e.g. testing examples) as it is too highly trained
to the specific (non-general) nuances of the training
examples.

Source: Dhar and Stein

Weaknesses
Underfitting

Underfitting means that the model performs poorly on new
examples as it is too simplistic to distinguish between them
(i.e. has not picked up the important patterns from the
training examples)

Source: Dhar and Stein

30

Example Applications

• Given a supermarket database of purchase
transactions, marked with customers who did and did
not use coupons, we can build a decision tree to
determine which variables influence coupon usage
and how much.

• Our dependent variable here is COUPON_USED.

• Our independent variables could be the time of day,
the type of customer, the number of television /
newspaper / magazine / in-store advertisements, or
other factors.

Testing, testing*
(*Material from here on is optional)

• Assessment / Evaluation Scheme. We can measure:

• accuracy of the model: are descriptions consistent and complete?
• profitability (cost of misclassifications): usually more important than

simple accuracy !
• simplicity / understandability (comprehensibility)
• handling of noise
• robustness (confidence of predictions; flexibility on new data)
• ability to handle continuous data (e.g. binning or normalizing may

introduce bias)
• computational cost of building and using the model
• adequacy of the representation language (e.g. as we’ll see decision

trees often don’t support complex functions on attributes)

31

Dealing with Categorical Values*
• For categorical values, we need to convert them to numeric values.

• We might treat ‘being in class A’ as ‘1’, and ‘not in class A’ as 0.
Therefore, two items in the same class have distance 0 for that
attribute, and two items in different classes have distance 1 for that
attribute. For example:

Take the bridge attributes: (deck type, purpose)
Take the bridges: Bridge 1 = (concrete, auto)

Bridge 2 = (steel, railway)
Bridge 3 = (concrete, railway)

We could compute distances as:
d(Bridge1,Bridge2) = 1 + 1 = 2
d(Bridge2,Bridge3) = 1 + 0 = 1
d(Bridge1,Bridge3) = 0 + 1 = 1

• Again, some form of weighting for attributes of different importance
may be useful.

Dealing with Categorical Values*

• We might also construct aggregation hierarchies, so that categories
far away from each other conceptually are given higher distances.

Concrete deck Steel deck

(Source: Dhar and Stein.)
Pre-cast deck Cast-at-site deck

Deck

• Using this hierarchy, we might regard the distance between pre-cast
and cast-at-site as 1 (they have a common parent), while the
distance between pre-cast and steel could be 2 (they have a
common grandparent). The distance between concrete and steel
would be 1 (they have a common parent).

32

Dynamically Choosing Attribute Weightings*

(Source: Dhar and Stein)

We could choose attribute weightings dynamically as they apply to the
case under consideration. Take the example below where the new
bridge we want to cost is X, and previous cases are marked as L, M, or
H (for Low, Medium, or High maintenance cost). Looking at the plot, it
seems that number of lanes has low discriminatory power because 4 of
the 5 historical examples in
the gray horizontal bar are
H. In contrast, length seems
to have high discriminatory
power as the 6 historic
examples in the gray
vertical bar are quite varied.
We might therefore give
length greater weighting
(importance) in our
distance metric.

Aside: Possible measures
of discriminatory power are
chi-squared statistics or
entropy, which we have
seen in earlier lectures.

Dealing with Missing Values*

• If there are missing values in the training examples when
building the decision tree:

• You can create a separate branch for ‘missing’, or, ...
• Provided missing values are few, you can just split on the other

known values, or
• Split on other attributes instead.

• If there are missing values in the new examples when
using the decision tree:

• You can let them flow down the ‘missing’ branch if you have
one, or, if you don’t have a missing branch ...

• You can notionally replicate the new example at the node
mentioning the missing attribute, and weight each replica of the
example based on the proportion of training examples that
went down each branch during training. Then, once each
replica reaches a leaf, calculate the probability of being in a
particular class by applying the weighting of each replica to
each probability you arrive at.

33

Decision Tree Variations*
Regression Trees

The leaves of a regression tree predict the average value for
examples that reach that node. Notice that the averages for each leaf
are widely separated, and the standard deviations for each leaf are
small. Thus we have heterogeneity between nodes and homogeneity
within nodes.

Age

Trust
Fund

Retirement
Fund

<18
No

Yes

>65 Yes

No

Professional
18-65

Average Income = $10,000 p.a.
Standard Deviation = $1,000

Yes

No

Average Income = $100 p.a.
Standard Deviation = $10

Average Income = $100,000 p.a.
Standard Deviation = $5,000

Average Income = $30,000 p.a.
Standard Deviation = $2,000

Average Income = $20,000 p.a.
Standard Deviation = $800

Average Income = $1,000 p.a.
Standard Deviation = $150

Decision Tree Variations*
Model Trees

The leaves of a model tree specify a function that can be
used to predict the value of examples that reach that node.

Age

Trust
Fund

Retirement
Fund

<18

No

Yes

>65 Yes

No

Professional
18-65

Income Per Annum =
Number Of Trust Funds * $5,000

Yes

No

Income Per Annum = Age * $50

Income Per Annum =
$80,000 + (Age * $2,000)

Income Per Annum = FundValue * 10%

Income Per Annum =
$100 * Number of Children

Income Per Annum =
$20,000 + (Age * $1,000)

34

Pruning*
A decision trees is typically more accurate on its training data than on
its test data. Removing branches from a tree can often improve its
accuracy on a test set - so-called ‘reduced error pruning’. The
intention of this pruning is to cut off branches from the tree when this
improves performance on test data - this reduces overfitting and makes
the tree more general.

Some decision trees (e.g. CART) use a cost-complexity metric, that
trades of accuracy against simplicity. Error-cost and cost-per-node
parameters are set by the user. Higher error-cost favors more accurate
trees (as we attempt to minimize the cost of misclassification errors).
Higher cost-per-node favors simpler trees (as complex trees have more
nodes and are more costly).

Source: Dhar and Stein

Some trees write the following information alongside each
node:

• support: the number of training examples that
reached that leaf (irrespective of their actual class)

• confidence: the percentage of training examples in
the predominant class at that leaf.

Example:

Building a Tree*
Support and Confidence

Income
(968 cases)

Debts
(272 cases)

Gender
(696 cases)

Children
(153 cases)

Responder
57 cases (88%)

Non-Responder
96 cases (91%)

Non-Responder
543 cases (89%)

Low

Male

High

Low

High

Female

Many

Few

Non-Responder
105 cases (90%)

Responder
167 cases (97%)

Support
Confidence

