

(1) Learning as Remembering: Case-Based Reasoning (CBR)

- People often take into consideration past experiences in formulating solutions to new problems. When handling a new problem one might think of earlier cases when similar situations happened, and use the previous solution as a starting point that can be adapted to the new situation.
- The intention of CBR is to solve problems by **analogy** or resemblance: it is often called analogical or experiential reasoning, 'instance-based representation', 'instance-based learning', or 'memory-based learning'.
- That is, keep a database of past cases (problems and their solutions). When presented with a new problem, find similar cases from the past using some **relevance (distance) criterion**, and use (an adaptation of) the solutions for the relevant historic cases that resemble the new case.
- Notice that this process can easily be applied to classification tasks: the 'problem' is the example's attributes, and the 'solution' is the assigned class.

Stages in CBR

1. Knowledge representation

Decide how to represent cases: attribute selection and transformation

2. Case building

Build a repository of cases (a 'case base'), ideally sampling many regions of the search space

3. Case comparison and retrieval

Compare a probe (i.e. new example) with the case base and retrieve the relevant cases

4. Adaptation

Modify previous solutions to account for the current scenario

5. Learning

Learn with new cases, learn the importance of attributes, etc.

Weaknesses of kNN-CBR

- CBR and KNN are '**lazy**' approaches: they do not construct a model in advance, but rather wait till they have to classify a new example.
- Contrast this with '**eager**' approaches like rule induction and decision trees which construct meaningful symbolic descriptions of classes from the training set and use those models for classification.
- With high-dimensional data, a case may not have any other cases near to it. Selecting a <u>subset</u> of relevant attributes (attribute selection) may help with this.

Building a Tree Stopping Criteria

You can stop building the tree when:

- The impurity of all nodes is zero: Problem is that this tends to lead to bushy, highly-branching trees, often with one example at each node.
- No split achieves a significant gain in purity
- Node size is too small: That is, there are less than a certain number of examples, or proportion of the training set, at each node.
- Note: there is seldom one 'best' tree but usually many good trees to choose from.

Example Applications

- Given a supermarket database of purchase transactions, marked with customers who did and did not use coupons, we can build a decision tree to determine which variables influence coupon usage and how much.
- Our dependent variable here is COUPON_USED.
- Our independent variables could be the time of day, the type of customer, the number of television / newspaper / magazine / in-store advertisements, or other factors.

Pruning*

A decision trees is typically more accurate on its *training* data than on its *test* data. Removing branches from a tree can often improve its accuracy on a test set - so-called '**reduced error pruning**'. The intention of this pruning is to cut off branches from the tree when this improves performance on test data - this reduces overfitting and makes the tree more general.

Some decision trees (e.g. CART) use a cost-complexity metric, that trades of **accuracy** against **simplicity**. Error-cost and cost-per-node parameters are set by the user. Higher error-cost favors more accurate trees (as we attempt to minimize the cost of misclassification errors). Higher cost-per-node favors simpler trees (as complex trees have more nodes and are more costly).

