Final Exam 2002 Problem 6: Support Vector Machines (14 Points)

Part A: (2 Points)

The following diagrams represent graphs of support vector machines trained to separate pluses (+) from minuses (-) for the same data set. The origin is at the lower left corner in all diagrams. Which represents the best classifier for the training data? *See the separate color sheet for a clearer view of these diagrams.*

Indicate your choice here:

E gives proper values to all points. So does D, but at the risk of overfitting.

Part B: (5 Points)

Match the diagrams in Part 1 with the following kernels:

Radial basis function, sigma .08DRadial basis function, sigma .5ERadial basis function, sigma 2.0BLinearASecond order polynomialC

Part C: (3 Points)

Order the following diagrams from *smallest* support vector weights to *largest* support vector weights, assuming all diagrams are produced by the same mechanism using a linear kernel (that is, there is no transformation from the dot-product space).

The origin is at the lower left corner in all diagrams. Support vector weights are also referred to as α_i values or LaGrangian multipliers. *See the separate color sheet for a clearer view of these diagrams.*

Part D (4 Points)

Suppose a support vector machine for separating pluses from minuses finds a plus support vector at the point $\mathbf{x}_1 = (1, 0)$, a minus support vector at $\mathbf{x}_2 = (0, 1)$.

You are to determine values for the classification vector w and the threshold value b. Your expression for w may contain \mathbf{x}_1 and \mathbf{x}_2 because those are vectors with known components, but you are not to include any α_i or y_i . Hint: think about the values produced by the decision rule for the support vectors, \mathbf{x}_1 and \mathbf{x}_2 .

w	$x_1 - x_2 = [1 - 1]$
b	0

The decision boundary goes through the origin, so b = 0.

We know $w = (a_1 x_1 - a_2 x_2)$, and x_1 is a support vector so, $w \cdot x_1 = 1$. Substituting for w, we get $w \cdot x_1 = (a_1 x_1 - a_2 x_2) \cdot x_1 = a_1 x_1 \cdot x_1 = a_1$ because x_1 and x_2 are orthogonal and x_1 is a unit vector. Hence $w \cdot x_1 = a_1 = 1$. Same reasoning yields $a_2 = 1$. So $w = (a_1 x_1 - a_2 x_2) = x_1 - x_2 = [1 - 1]$.