Nets and
Basic Search

In this chapter, you learn how to find paths through nets, thus solving
search problems.” In particular, you learn about depth-first search and
breath-first search, both of which are methods that involve blind groping.
You also learn about hill-climbing, beam search, and best-first search, all of
which are methods that are guided by heuristic quality estimates.

Search problems pop up everywhere. In this chapter, you see examples
involving map traversal and recipe discovery. Other chapters offer many
other examples of the basic search methods in action, including an example,
in Chapter 29, of how depth-first search can be used to provide natural-
language access to a database.

Once you have finished this chapter, you will know that you must think
about several questions if you are to use search methods wisely; these are
examples:

B Is search the best way to solve the problem?
® Which search methods solve the problem?
® Which search method is most efficient for this problem?

TMany problem-solving paradigms, like search, require only a weak understanding
of the domains to which they are applied. Consequently, some people call such
problem-solving paradigms weak methods. The term weak method is not used in
this book because it can be taken to mean low powered.

63

64 Chapter 4 Nets and Basic Search

Figure 4.1 A basic search
problem. A path is to be
found from the start node, S,
to the goal node, G. Search
procedures explore nets such
as these, learning about
connections and distances as

they go.
]

BLIND METHODS

Suppose you want to find some path from one city to another using a
highway map such as the one shown in figure 4.1. Your path is to begin at
city S, your starting point, and it is to end at city G, your goal. To find
an appropriate path through the highway map, you need to consider two
different costs:

m First, there is the computation cost expended when finding a path.

B And, second, there is the travel cost expended when traversing the
path.

If you need to go from S to G often, then finding a really good path is
worth a lot of search time. On the other hand, if you need to make the
trip only once, and if it is hard to find any path, then you may be content
as soon as you find some path, even though you could find a better path
with more work.

In this chapter, you learn about the problem of finding one path. In the
rest of this section, you learn about finding one path given no information
about how to order the choices at the nodes so that the most promising
are explored earliest.

Net Search Is Really Tree Search

The most obvious way to find a solution is to look at all possible paths.
Of course, you should discard paths that revisit any particular city so that
you cannot get stuck in a loop—such as S-A-D-S8-A-D-S-A-D-....

With looping paths eliminated, you can arrange all possible paths from
the start node in a search tree, a special kind of semantic tree in which
each node denotes a path:

Net Search Is Really Tree Search 65

Figure 4.2 A search tree
made from a net. Each node
denotes a path. Each child
node denotes a path that is

a one-step extension of the
path denoted by its parent. You
convert nets into search trees
by tracing out all possible paths
until you cannot extend any of

them without creating a loop.
L]

Denotes the path S-D

Denotes the path S-D-A-B-E-F-G

A search tree is a representation

That is a semantic tree

In which

> Nodes denote paths.

> Branches connect paths to one-step path extensions.
With writers that

> Connect a path to a path description

With readers that

> Produce a paths’s description

Figure 4.2 shows a search tree that consists of nodes denoting the possible
paths that lead outward from the start node of the net shown in figure 4.1.

Note that, although each node in a search tree denotes a path, there
is no room in diagrams to write out each path at each node. Accordingly,
each node is labeled with only the terminal node of the path it denotes.
Each child denotes a path that is a one-city extension of the path denoted
by its parent.

66

Chapter

4 Nets and Basic Search

In Chapter 3, the specification for the semantic-tree representation
indicated that the node at the top of a semantic tree, the node with no
parent, is called the root node. The nodes at the bottom, the ones with
no children, are called leaf nodes. One node is the ancestor of another, a
descendant, if there is a chain of one or more branches from the ancestor
to the descendant.

If a node has b children, it is said to have a branching factor of 5. If
the number of children is always b for every nonleaf node, then the tree is
said to have a branching factor of b.

In the example, the root node denotes the path that begins and ends at
the start node S. The child of the root node labeled A denotes the path S-
A. Bach path, such as S-A, that does not reach the goal is called a partial
path. Each path that does reach the goal is called a complete path, and
the corresponding node is called a goal node.

Determining the children of a node is called expanding the node.
Nodes are said to be open until they are expanded, whereupon they become
closed.

Note that search procedures start out with no knowledge of the ulti-
mate size or shape of the complete search tree. All they know is where to
start and what the goal is. Each must expand open nodes, starting with
the root node, until it discovers a node that corresponds to an acceptable
path.

Search Trees Explode Exponentially

The total number of paths in a tree with branching factor b and depth d is
b¢. Thus, the number of paths is said to explode exponentially as the
depth of the search tree increases.

Accordingly, you always try to deploy a search method that is likely to
develop the smallest number of paths. In the rest of this section, you learn
about several search methods from which you can choose.

Depth-First Search Dives into the Search Tree

Given that one path is as good as any other, one simple way to find a path is
to pick one of the children at every node visited, and to work forward from
that child. Other alternatives at the same level are ignored completely, as
long as there is hope of reaching the goal using the original choice. This
strategy is the essence of depth-first search.

Using a convention that the alternatives are tried in left-to-right order,
the first thing to do is to dash headlong to the bottom of the tree along
the leftmost branches, as shown in figure 4.3.

But because a headlong dash leads to leaf node C, without encoun-
tering G, the next step is to back up to the nearest ancestor node that
has an unexplored alternative. The nearest such node is B. The remaining
alternative at B is better, bringing eventual success through E in spite of
another dead end at D. Figure 4.3 shows the nodes encountered.

Depth-First Search Dives into the Search Tree

67

Figure 4.3 An example

of depth-first search. One
alternative is selected and
pursued at each node until
the goal is reached or a node
is reached where further
downward motion is impossible.
When further downward
motion is impossible, search
is restarted at the nearest
ancestor node with unexplored

children.
]

Figure 4.4 An example of
breadth-first search. Downward
motion proceeds level by level,

until the goal is reached.
. ___|

68

Chapter

4 Nets and Basic Search

If the path through E had not worked, then the procedure would move
still farther back up the tree, seeking another viable decision point from
which to move forward. On reaching A, the procedure would go down
again, reaching the goal through D.

Having learned about depth-first search by way of an example, you can
see that the procedure, expressed in procedural English, is as follows:

To conduct a depth-first search,

> Form a one-element queue consisting of a zero-length path that
contains only the root node.

> Until the first path in the queue terminates at the goal node or
the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.
> Add the new paths, if any, to the front of the queue.

> If the goal node is found, announce success; otherwise, an-
nounce failure.

Breadth-First Search Pushes Uniformly into the Search Tree

As shown in figure 4.4, breadth-first search checks all paths of a given
length before moving on to any longer paths. In the example, breadth-first
search discovers a complete path to node G on the fourth level down from
the root level.

A procedure for breadth-first search resembles the one for depth-first
search, differing only in where new elements are added to the queue:

To conduct a breadth-first search,

> Form a one-element queue consisting of a zero-length path that
contains only the root node.

> Until the first path in the queue terminates at the goal node or
the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.
> Add the new paths, if any, to the back of the queue.

> If the goal node is found, announce success; otherwise, an-
nounce failure.

Nondeterministic Search Moves Randomly into the Search Tree 69

The Right Search Depends on the Tree

Depth-first search is a good idea when you are confident that all partial
paths either reach dead ends or become complete paths after a reasonable
number of steps. In contrast, depth-first search is a bad idea if there are
long paths, even infinitely long paths, that neither reach dead ends nor
become complete paths. In those situations, you need alternative search
methods.

Breadth-first search works even in trees that are infinitely deep or ef-
fectively infinitely deep. On the other hand, breadth-first search is wasteful
when all paths lead to the goal node at more or less the same depth.

Note that breath-first search is a bad idea if the branching factor is
large or infinite, because of exponential explosion. Breadth-first search is a
good idea when you are confident that the branching factor is small. You
may also choose breadth-first search, instead of depth-first search, if you
are worried that there may be long paths, even infinitely long paths, that
neither reach dead ends nor become complete paths.

Nondeterministic Search Moves Randomly
into the Search Tree

You may be so uninformed about a search problem that you cannot rule
out either a large branching factor or long useless paths. In such situa-
tions, you may want to seek a middle ground between depth-first search
and breadth-first search. One way to seek such a middle ground is to choose
nondeterministic search. When doing nondeterministic search, you ex-
pand an open node that is chosen at random. That way, you ensure that
you cannot get stuck chasing either too many branches or too many levels:

To conduct a nondeterministic search,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal node
or the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.
> Add the new paths at random places in the queue.

> If the goal node is found, announce success; otherwise, an-
nounce failure.

70

Chapter

4 Nets and Basic Search

HEURISTICALLY INFORMED METHODS

Search efficiency may improve spectacularly if there is a way to order the
choices so that the most promising are explored earliest. In many situ-
ations, you can make measurements to determine a reasonable ordering.
In the rest of this section, you learn about search methods that take ad-
vantage of such measurements; they are called heuristically informed

‘methods.

Quality Measurements Turn Depth-First Search
into Hill Climbing

To move through a tree of paths using hill climbing, you proceed as you
would in depth-first search, except that you order your choices according to
some heuristic measure of the remaining distance to the goal. The better
the heuristic measure is, the better hill climbing will be relative to ordinary
depth-first search.

Straight-line, as-the-crow-flies distance is an example of a heuristic
measure of remaining distance. Figure 4.5 shows the straight-line distances
from each city to the goal; Figure 4.6 shows what happens when hill climb-
ing is used on the map-traversal problem using as-the-crow-flies distance
to order choices. Because node D is closer to the goal than is node A, the
children of D are examined first. Then, node E appears closer to the goal
than is node A. Accordingly, node E’s children are examined, leading to a
move to node F, which is closer to the goal than node B. Below node F,
there is only one child: the goal node G.

From a procedural point of view, hill climbing differs from depth-first
search in only one detail; there is an added step, shown in italic type:

To conduct a hill-climbing search,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal node
or the queue is empty,

> Remove the first path from the queue; create new paths by
extending the first path to all the neighbors of the terminal
node.

> Reject all new paths with loops.

> Sort the new paths, if any, by the estimated distances be-
tween their terminal nodes and the goal.

> Add the new paths, if any, to the front of the queue.

> If the goal node is found, announce success; otherwise, an-
nounce failure.

Quality Measurements Turn Depth-First Search into Hill Climbing

71

Figure 4.5 Figure 4.1
revisited. Here you see the
distances between each city
and the goal. If you wish to
reach the goal, it is usually
better to be in a city that is
close, but not necessarily; city
C is closer than all but city F,
but city C is not a good place

to be.
.]

Figure 4.6 An example of
hill climbing. Hill climbing

is depth-first search with a
heuristic measurement that
orders choices as nodes are
expanded. The numbers
beside the nodes are straight-
line distances from the path-
terminating city to the goal city.

72

Chapter

4 Nets and Basic Search

Generally, exploiting knowledge, as in hill climbing, reduces search time, a
point worth elevating to the status of a powerful idea:

Whenever faced with a search problem, note that,

> More knowledge generally leads to reduced search time.

Sometimes, knowledge reduces search time by guiding choices, as in the
example. Sometimes, knowledge reduces search time by enabling you to
restate a problem in terms of a smaller, more easily searched net; this
observation leads directly to another powerful idea:

When you think you need a better search method,
> Find another space to search instead.

Although search is involved in many tasks, devising a fancy, finely tuned
search procedure is rarely the best way to spend your time. You usually do
better if you improve your understanding of the problem, thereby reducing
the need for fanciness and fine tuning.

Foothills, Plateaus, and Ridges Make Hills Hard to Climb

Although it is simple, hill climbing suffers from various problems. These
problems are most conspicuous when hill climbing is used to optimize pa-
rameters, as in the following examples:

m On entering a room, you find that the temperature is uncomfortable.
You decide to adjust the thermostat.

m The picture on your television set has deteriorated over time. You
decide to adjust the color, tint, and brightness controls for a better
picture.

®m You are climbing a mountain when a dense fog rolls in. You have no
map or trail to follow, but you do have a compass, an altimeter, and a
determination to get to the top.

Each of these problems conforms to an abstraction in which there are
adjustable parameters and a measured quantity that tells you about the
quality or performance associated with any particular setting of the ad-
justable parameters.

In the temperature example, the adjustable parameter is the thermo-
stat setting, and your comfort determines how well the parameter has been
set. In the television example, the various controls are the parameters,
and your subjective sense of the picture’s quality determines how well the
parameters have been set.

In the mountaineering example, your location is the adjustable param-
eter, and you can use your altimeter to determine whether you are pro-
gressing up the mountain. To get to the top using parameter-oriented

Foothills, Plateaus, and Ridges Make Hills Hard to Climb 73

hill climbing, you tentatively try a step northward, then you retreat and
try a step eastward. Next you try southward and westward as well. Then
you commit to the step that increases your altitude most. You repeat until
all tentative steps decrease your altitude.

More generally, to perform parameter-oriented hill climbing, you make
a one-step adjustment, up and down, to each parameter value, move to
the best of the resulting alternatives according to the appropriate measure
of quality or performance, and repeat until you find a combination of pa-
rameter values that produces better quality or performance than all of the
neighboring alternatives.

But note that you may encounter severe problems with parameter-
oriented hill climbing:

B The foothill problem occurs whenever there are secondary peaks, as
in the example at the top of figure 4.7. The secondary peaks draw the
hill-climbing procedure like magnets. An optimal point is found, but it
is a local maximum, rather than a global maximum, and the user
is left with a false sense of accomplishment or security.

m The plateau problem comes up when there is a mostly flat area sep-
arating the peaks. In extreme cases, the peaks may look like telephone
poles sticking up in a football field, as in the middle example of fig-
ure 4.7. The local improvement-operation breaks down completely. For
all but a small number of positions, all standard-step probes leave the
quality measurement unchanged.

8 The ridge problem is more subtle, and, consequently, is more frus-
trating. Suppose you are standing on what seems like a knife edge
contour running generally from northeast to southwest, as in the bot-
tom example of figure 4.7. A contour map shows that each standard
step takes you down, even though you are not at any sort of local
or global maximum. Increasing the number of directions used for the
probing steps may help.

Among these problems, the foothill problem is particularly vexing, espe-
cially as the number of parameter dimensions increases. When you reach
a point from which all steps lead down, you could retreat to a previous
choice point and do something else, as hill climbing prescribes, but there
may be millions of paths back to the same local maximum. If there are,
you are really stuck if you stick to ordinary hill climbing.

Accordingly, you may want to do a bit of nondeterministic search when
you detect a local maximum. The reason for using this strategy is that a
random number of steps, of random size, in random directions, may shield
you from the magnetlike attraction of the local maximum long enough for
you to escape.

74 Chapter 4 Nets and Basic Search

Figure 4.7 Hill climbing is

a bad idea in difficult terrain.
In the top example, foothills
stop progress. In the middie
example, plains cause aimless
wandering. In the bottom
example, with the terrain
described by a contour map,
all ridge points look like
peaks because both east—
west and north—south probe
directions lead to lower-quality
measurements.

N//

\

\

E
Steps in all) .
compass directions High altitude
from a ridge point contour line
cross contour lines \

going down.

Low altitude
contour line

v

Search May Lead to Discovery 75

Beam Search Expands Several Partial Paths
and Purges the Rest

Beam search is like breadth-first search in that it progresses level by
level. Unlike breadth-first search, however, beam search moves downward
only through the best w nodes at each level; the other nodes are ignored.
Consequently, the number of nodes explored remains manageable, even if
there is a great deal of branching and the search is deep. Whenever beam
search is used, there are only w nodes under consideration at any depth,
rather than the exponentially explosive number of nodes with which you
must cope whenever you use breadth-first search. Figure 4.8 illustrates how
beam search would handle the map-traversal problem.

Best-First Search Expands the Best Partial Path

Recall that, when forward motion is blocked, hill climbing demands forward
motion from the most recently created open node. In best-first search,
forward motion is from the best open node so far, no matter where that
node is in the partially developed tree.

In the example map-traversal problem, hill climbing and best-first
search coincidentally explore the search tree in the same way.

The paths found by best-first search are likely to be shorter than those
found with other methods, because best-first search always moves forward
from the node that seems closest to the goal node. Note that likely to be
does not mean certainly are, however.

Search May Lead to Discovery

Finding physical paths and tuning parameters are only two applications
for search methods. More generally, the nodes in a search tree may denote
abstract entities, rather than physical places or parameter settings.

Suppose, for example, that you are wild about cooking, particularly
about creating your own omelet recipes. Deciding to be more systematic
about your discovery procedure, you make a list of ingredient transforma-
tions for varying your existing recipes:

Replace an ingredient with a similar ingredient.
Double the amount of an ingredient.

Halve the amount of an ingredient.

Add a new ingredient.

Eliminate an ingredient.

Naturally, you speculate that most of the changes suggested by these ingre-
dient transformations will turn out to taste awful, and thus to be unworthy
of further development.

76 Chapter 4 Nets and Basic Search

Figure 4.8 An example of
beam search. The numbers
beside the nodes are straight-
line distances to the goal node.
Investigation spreads through
the search tree level by level,
but only the best w nodes are
expanded, where w = 2 here.
The remaining paths, those
shown terminated by underbars,

are rejected.
I A

Search May Lead to Discovery

77

Figure 4.9 A search tree
with recipe nodes. Ingredient
transformations build the tree;
interestingness heuristics guide
the best-first search to the

better prospects.
]

Basic apricot omelet

Variations
(mostly bad)

s
s / /

Variations
(mostly bad)

Consequently, you need interestingness heuristics to help you to
decide on which recipes to continue to work. Here are four interestingness
heuristics:

® It tastes good.

® It looks good.

® Your friends eat a lot of it.

B Your friends ask for the recipe.

Interestingness heuristics can be used with hill climbing, with beam search,
or with best-first search.

Figure 4.9 shows part of the search tree descending from a basic recipe
for an apricot omelet, one similar to a particular favorite of Rex Stout’s
fictional detective and gourmand Nero Wolfe:

Ingredients for Apricot Omelet Recipe

1 ounce kiimmel

1 cup apricot preserves

6 eggs

2 tablespoons cold water

1/2 teaspoon salt

2 teaspoons sugar

2 tablespoons unsalted butter
1 teaspoon powdered sugar

As shown in figure 4.9, you can discover a strawberry omelet recipe using
the substitution transformation on the basic apricot omelet recipe. Once
you have a strawberry omelet, you can go on to discover a strawberry-peach
recipe, using the addition transformation.

Of course, to be a real recipe generator, you would have to be skilled
at generating plausible transformations, for you would waste too many

78 Chapter

4 Nets and Basic Search

Figure 4.10 Part of the

search family of procedures.
|

Breadth-first
search

Beam search

Best-ﬁrst
segrch

Nondeterministic
segrch

AN
Depth-first

Hill limbing

Heurisﬁcélly
informed
procedures

Basic search
procedures

eggs otherwise. Essentially, you need to remember that more knowledge
generally leads to reduced search time.

Search Alternatives Form a Procedure Family

You have seen that there are many ways for doing search, each with ad-
vantages:

Depth-first search is good when unproductive partial paths are never
too long.

Breadth-first search is good when the branching factor is never too
large.

Nondeterministic search is good when you are not sure whether depth-
first search or breadth-first search would be better.

Hill climbing is good when there is a natural measure of distance from
each place to the goal and a good path is likely to be among the partial
paths that appear to be good at each choice point.

Beam search is good when there is a natural measure of goal distance
and a good path is likely to be among the partial paths that appear to
be good at all levels.

Best-first search is good when there is a natural measure of goal dis-
tance and a good partial path may look like a bad option before more
promising partial paths are played out.

All these methods form part of the search family of procedures, as shown
in figure 4.10.

SUMMARY

Depth-first search dives into the search tree, extending one partial path
at a time.

Background 79

@ DBreadth-first search pushes uniformly into the search tree, extending
many partial paths in parallel.

® Nondeterministic search moves randomly into the search tree, picking
a partial path to extend at random.

B Heuristic quality measurements turn depth-first search into hill climb-
ing. Foothills, plateaus, and ridges make hills hard to climb.

@ Heuristic quality measurements also are used in beam search and best-
first search. Beam search expands a fixed number of partial paths in
parallel and purges the rest. Best-first search expands the best partial
path.

m Heuristically guided search may lead to discovery, as in the example of
recipe improvement.

B Search alternatives form a procedure family.

® More knowledge generally means less search.

B When you think you need a better search method, try to find another
space to search instead.

BACKGROUND

Artificial intelligence is but one of many fields in which search is an impor-
tant topic. Artificial intelligence’s particular contribution lies largely in the
development of heuristic methods such as those discussed in this chapter,
in Chapter 6, and in many of the chapters in Part II.

You can learn more about the contributions of other fields to search
from many books. Look for those with titles that include words such as
algorithms, linear programming, mathematical programming, optimization,
and operations research.

You can learn more about heuristic search from Principles of Artificial
Intelligence, by Nils J. Nilsson [1980].

The discussion of omelet-recipe generation is based on ideas introduced
in the work of Douglas B. Lenat [1977]. Lenat’s AM program, a break-
through in learning research, discovered concepts in mathematics. AM
developed new concepts from old ones using various transformations, and
it identified the most interesting concepts for further development.

