
Problem Set 2: Game Search, GAs, Constraints
6.034 Fall 2004

http://www.csail.mit.edu/courses/6.034f/
Due: Tuesday, October 12th, 2004

(We strongly recommend you have 1-5 done by 10/08.)

For this problem set, either download ALL the files from the ps2 directory, or download an unpack the
ps2.tar.gz file. Fill in your answers in ps2.scm; this will be the only file we collect.

While wrestling with rules and search at Ur-Bits (and Louis Reasoner’s maddening management style),
Ben Bitdiddle picked up Go as a displacement activity. After completing Louis’s assignments, Ben decided
to take a good long vacation in Tahiti, bringing along only his Go set, his laptop, and a bottle of fine gin,
and apply himself equally to the study of each. Being a hacker at heart, Ben rapidly came to the conclusion
that the key to his success - and his freedom from Louis’s tyranny - lay in the development of a champion
computer Go player.

Before diving into Go, however, Ben decided he should dust off his 6.034 game search skills, by applying
them to much simpler problems. Ben decided to warm up by remembering exactly how the minimax
algorithm worked, and began furiously scribbling in the sand with his finger.

Problem 1: Minimax
Give the result of performing minimax on the following trees, assuming that the player at the root node is

trying to maximize her score. Note that a tree of uneven depth might occur if the search has heuristics that
can prune certain branches a priori (e.g. a blunderstopping device/novice strategy in chess telling you to
never put your queen at risk) but this doesn’t change the fundamental structure of the algorithm. Also note
that you are not required to code up solutions to this problem, but problem 4 asks you to implement minimax,
and you can use it here if you want.

1. (((1 4) (3 6)) ((8 4) (2 7)))

2. ((((4 6) (8 12)) ((13 2) (7 1))) (((9 5) (6 8)) (2 6) (14 7)))

3. ((2 1) ((4 7) (6 (8 2))))

4. ((4 8 7) ((2 3) 9) (10 (0 11)) ((14 6) (12 2)))

Some of the other beachcombers were starting to give Ben odd looks, possibly because Ben was wasting
effort by using an algorithm that must consider every leaf node. “Yeah, yeah”, Ben muttered to himself,
“I’ll fix you all.” He got to work on remembering alpha-beta pruning.

Problem 2: Alpha-Beta Pruning
For the following trees, give a list whose first element is the list of values the static evaluator would produce,

in left-to-right order, and whose second element is the final score of the tree, if the tree was processed by
the alpha-beta pruning algorithm. Again assume the player at the root node is trying to maximize his score.
Look at the first test case if you are confused.

1. ((7 3) (4 7))

2. ((9 8 7) (6 5 4) (3 2 1))

3. ((1 2 3) (4 5 6) (7 8 9))

1



“There! Finished! Now on to the real stuff!” Ben said, standing up, stretching, and gazing at the swath
of sand he’d covered with scribbles. All of a sudden, however, he felt a tap on his shoulder. Turning around,
he noticed the glint of a brass rat, and, looking up, the friendly face of Alyssa P. Hacker, grinning at him
and arching an eyebrow.

“Enjoying your vacation?” She asked.
“Yeah, sure,” Ben affirmed, motioning vaguely at his spot on the beach, his bottle of gin, and his

handiwork (in that order). “I just finished with basic alpha beta pruning, and I’m ready to tackle Go.”
“Ha! Alpha Beta has its subtleties, you know. I wonder if you remember them,” Alyssa challenged. They

were soon lost in conversation.

Problem 3: Game Search Questions
Answer the following true/false questions; fill in #t if the answer is true, and #f otherwise.

1. When using minimax with alpha-beta pruning, rearranging the branches coming from a given node
has no effect on the eventual answer that is reached.

2. When using minimax with alpha-beta pruning, rearranging the branches coming from a given node
has no effect on which leaves must be statically evaluated.

3. The use of alpha-beta pruning can never reduce the total number of static evaluations needed by more
than a factor of 2 (from the number needed by pure minimax).

4. On any given search tree, the time spent using progressive deepening to ensure that an answer is always
ready is always about one-half of the total computation time.

5. Even for a simple game such as Tic Tac Toe, a human being cannot feasibly draw out a search tree
representing every possible sequence of game states on pencil and paper (in a reasonable amount of
time, say as part of a final exam question).

While Ben and Alyssa argued, the sun set and night fell. Sighing at Ben, Alyssa told him she had to leave,
and that she hoped she’d convinced him Go was out of his reach, at least for the moment. Ben remained,
spending a while staring glumly at the waves, before deciding he would implement minimax search to make
sure he knew what he was talking about. Trained to work through the break of dawn, Ben shook off his
weariness and his encroaching hangover and sat down to code.

Problem 4: Implementing Minimax Search
Implement the minimax function, assuming it is only externally called by a player seeking to maximize

his/her score. It should take a tree (of the form from problem 1) as an argument and return a list of the
maximum score attainable and the branch to take to get there (as valid input to list-ref). See the public
test cases if you’re confused. If minimax is called on a number, the branch to report is -1.

Having completed and tested minimax, Ben decided he would go to bed and sleep on the issue of how to
scale up to Go. Compulsively checking his email one last time before sleep, however, Ben noticed a message
labeled “UNBELIEVABLY URGENT: GAs ARE THE WAY AND THE LIGHT” from Louis Reasoner.
Muttering about Louis’ tendency to hit the bottle then send him email at wee hours, Ben decided to address
the email before he went to bed.

Looking more closely, it appears Louis had read about genetic algorithms in Daily Proactive Synergy:
Buzzwords You Must Pretend to Know, a dreadful management rag Louis had been obsessed with recently.
He had come up with a scheme to use Ur-Bits’s petty cash via online trading. His plan was to “evolve” a set

2



of trading bots, whose code is represented by a simple bit string, to place trades. He offhandedly mentioned
something about maybe treating the bit strings as piles of assembler instructions for a special Trading Bot
Machine or “something like that”, but “didn’t elaborate because evolution would take care of all the rest”.

Louis proposed “crossing” bots’ programs as follows: Assume all the programs have length n. Select a
random integer k ranging from 1 to n. Construct a “child” bit string from two parent bit strings A and
B by selecting the first k bits from A, and the rest from B. Louis mentioned something about “needing
random mutations to, you know, make progress”, and proposed mutating a program by randomly flipping
m of its bits, where m is the mutation rate. If pruning of the population becomes necessary, Luis suggested
measuring the trading performance of each bot (say the average profit per day), and using that as the fitness
metric; he didn’t go into details of how exactly pruning would be done.

Louis wanted Ben to code up the GA search immediately. Ben rolled his eyes and realised he’d better
disabuse Louis of his notions before GAs became his personal hell for the rest of his time at Ur-Bits (and
watching the company go down the tubes in the process, unless they got exceedingly lucky). He started an
angry email involving a few scenarios..

Problem 5: Genetic Algorithms
Fill in the blanks in your solutions scheme file for each of the following questions. True/False should be

answered as for problem 3. If the question asks for a numerical answer, fill in the appropriate number. If
the question asks for a yes or no answer, fill in the symbol yes (the text ’yes) for an affirmative answer, and
the symbol no (text ’no) for a negative one.

1. Assume the current generation of bots at time t = 0 has two members, one described by the bit string
000 and the other described by the bit string 111. Also assume at each generation only crossover steps
are applied, and in fact all possible crossovers (that is, for every pair in the population, all splits) are
generated at each generation. How many more generations are needed to generate any 3-bit string?

2. Yes/No: Assume Ur-Bits’ computer system can sustain a population of 2n−2 bots whose programs have
bit-length n, even for reasonably large n (say 32). Assume the initial population has two elements,
one whose program is all 0s, and the other whose program is all 1s. Without mutations, should Louis
expect local minima to generally be a problem for the search?

3. True/False: Based on the information given, two bots whose bit strings are close according to the
Hamming distance (that is, the number of bits that differ between them is small) should definitely
exhibit similar average daily trading profits.

4. True/False: Based on the information given, two bots whose strings differ by only a single mutation
should definitely exhibit similar average daily trading profits.

5. True/False: The structure of the mappings from bit string (genotype) to program (phenotype) to
fitness will strongly impact the effectiveness of a GA search.

6. True/False: Based on the information given, a high-mutation-rate search with crossovers on a very
small population (relative to bit size) will very likely perform better than a completely random search
(generate many random bit strings; pick the best one).

7. Yes/No: Should Louis expect high mutation rates to help the GA search escape local minima (if the
population is small relative to the bit string length)?

Sated, Ben Bitdiddle goes to sleep. The next day, he wakes up to find an email from his admiring cousin,
Ike N. Graduate, who is entering his freshman year and planning to major in Course 6. Ike is sweating about
all the course requirements the major presents; he wants to know how he can schedule his courses to ensure
timely graduation, given e.g. constraints on the terms they’re offered, prerequisites and such.

3



Ben glances at his trusty gin bottle, but finds it empty. He shrugs and decides he’ll take the opportunity
to brush up on constraint-based search while lounging on the beach. Rummaging around on his laptop, he
finds code for part of a constraint-satisfaction engine dating back to his 6.034 days, but he can’t remember
exactly how it works. He decides to warm up by writing some basic arithmetic constraints.

After getting one completed example running, Ben decides to try to solve some simple constraint satis-
faction problems, on the finite-domain, numerical variables a, b and c.

Problem 6: Simple Minded Net
Follow the instructions from the enumerated list below, in order. This problem is aimed at familiarizing

you with the constraints package; none of the scheme you have to write is at all involved.

1. Look at the file constraints-example.scm. Evaluate it, carefully read the comments, and observe
the results. It describes the constraints package you’ll be using for the rest of the pset. Also read the
constraints-notes.txt file.

2. Fill in the blanks to use constraint search to find a solution to the constraint network from the example
file (look at the stub procedure go-simple-net-with-search. Note that this part uses no constraint
propagation, but returns all consistent answers; it simply takes more work than the combination of
search and constraint propagation.

3. Fill in the blanks to implement the constraint-satisfaction problem shown below. To do this, you will
have to implement a new constraint type, diff<threshold, to represent the last two constraints, and
insert the constraint arcs corresponding to these new constraints.

a ∈ {23, 4}
b ∈ {3, 5, 6}

c ∈ {1, 2, 3, 4}
a + b > 11
b + c > 8

a− c < 20
c− b < −1

4. Fill in the blanks to implement the stopping condition
constraint-search-strategy::have-enough-successes?::one. Compare (visually, nothing to turn
in) the solutions you get from this strategy vs the
constraint-search-strategy::have-enough-successes?::all strategy to the constraint search
problem from the examples. (You can do this by looking at the results of the public test cases.)

Warmed up and with a completed constraint propagator, Ben feels ready to tackle Ike’s schedule. He
opts for a flexible framework, in which his user can specify how many terms they want to graduate in (Ben
thinks Ike might take awhile), how many classes they’re willing to take per semester, and what requirements
they must fulfill. His program uses the constraint propagator to assess

Problem 7: Course Scheduling
Fill in the blanks (in your solutions file) for the course scheduling constraint system, meeting the speci-

fiations of and using the framework provided in courses.scm. Pay particular attention to the comments at
the top, which specify what a required course is, what a course requirements list is, what variables/domains
should be used, etc. Also pay attention to the public test cases and the comments in courses.scm, which
you may find helpful in deciding how to structure your code.

4



1. Prerequisites only: In the first part of this problem you are expected to build a network much
like you did in the previous simple-minded net. You will have to parse the list of courses into the
network and add the constraints for the prerequisites only. This means that in the representation
you are given, you will include the slot term in the domain, but will not add constraints involving it.
You are supposed to provide code for instantiate-prereq-constraints, instantiate-course-variable. The
functions create-prereqs-constraint-net, and generate-prereqsonly-graduation-plan are provided for you
to test your solution up to here.

2. Scheduling: As you may have noticed from the test cases, the network produced in the previous item
does not allow for proper scheduling of courses. In fact some of its solutions would imply a massive
amount of credits per term for Ike to take. Here is where having introduced an additional element in
our representation, namely, the slot field, we can benefit from a better choice of representation. The slot
field assumes that there is a maximum number of courses a student can take per semester (due to the
finite nature of semesters that does not make justice to the infinite capabilities of our students). Your
task will be to complete create-schedule-constraint-net to make sure that no two courses are allocated
in the same slot by adding suitable constraints to the network. A good way to do so it to seek some
inspiration from create-prereqs-constraint-net.

Note that both parts will require you to implement predicates defining the semantics of the constraints
you’re adding (analogous to e.g. diff<threshold in the simple-minded net problem).

With Ike on a safe path to graduation, Ben’s mind drifts (briefly!) back to games. He remembers a
classic problem in artificial intelligence (and in chess), where the task is to place N queens on an N by
N chessboard, such that none of the queens are threatened. He furthermore remembers that constraint
satisfaction dramatically simplifies the search for such arrangements, since a queen in a certain position
immediately rules out many other positions for the other queens. He decides to hack together a quick
N-queens solver using his constraint package before the flight home.

Problem 8: N-Queens
The file Nqueens.scm contains almost the entire code needed to solve the N-queens problem. The only

missing element is the threat constraint between queens - that is, the procedure that returns false if two queens
are on the same row, the same column, or the same diagonal. Your job is to supply this function and use
the completed code to solve N-queens for a few dimensions. A few words of advice are below.

1. If you represent the domain of each queen as a coordinate pair, you have an enormous amount of work
to do. (Think about it.) If, on the other hand, you identify queens with their own columns (as, at bare
minimum, each queen must be on its own column), you only need to check for row/diagonal collisions.

2. The variable names in Nqueens.scm are the column indices of each queen (from 0 to N-1). Their
domains are the rows of each queen (from 0 to N-1).

3. The pairwise threat constraints are equipped with two parameters, named col1 and col2. The first
contains the column of the queen at one end of the constraint; the second contains the column of the
queen at the other end of the constraint. Combined with the values of each queen variable, this gives
you the coordiantes of each queen, enabling you to detect horizontal and diagonal threats.

Wrap-up
When you have completed this problem set, you should be able to ssh into athena.dialup.mit.edu and

type:

cd ~/6.034-files/ps2/
add scheme
scheme

5



(load "tester.scm")
(test-file "ps2" "ps2-publictest")

This will evaluate your problem set based on the public test cases; you should pass them all! Good luck!

6


