A Method of Forming Self-Healing Patterns on Amorphous Computing Agents: Preliminary Proposal
Bradley Hasegawa

Abstract: This paper outlines a preliminary idea for project to be done as an MEng thesis. I would work on this project under the guidance of Dr. Radhika Nagpal in the Amorphous Computing group in Project MAC (Project MAC is associated with both the AI Lab and LCS). The Amorphous Computing group focuses engineering huge numbers of identical computational devices to work together to perform large-scale tasks. These computing agents are not assumed to be connected to each other in any well defined way or to be very reliable. The model for the devices is mass production on the order of thousands to billions of them. Amorphous computing looks to the study of biology for ideas of how such engineering can be accomplished. The goal of the project is to extend the work done by Lauren Clement1 on programming self repairing lines into immobile amorphous agents. A line in this context exists in the internal states of the agents - each agent knows whether or not it is part of a particular line. Therefore the agents can turn on a light if they are part of the line and these lights will show the line. The algorithms developed by Clement will be extended to work with multiple lines and to deal with endpoint death in the lines. The algorithms will be combined with the methods Nagpal has developed2 to form 2D patterns on groups of agents in a C program, with the hope to run this C program on commercially available agents called MICA Motes.

Overview of the Research Area
The Amorphous Computing group is affiliated with the AI Lab and LCS. Fundamentally, the research of the group is unified by the inspiration received from the powerful emergent behavior produced by systems of living things. The most dramatic example of nature's ability to engineer is the fact that cells programmed with virtually identical genetic information can organize themselves in such a way as to form complex living animals. Yet other examples of living things cooperating to accomplish tasks include bees cooperating to build a hive, wolves hunting together, and humans building civilizations. These diverse examples share some features that are quite impressive from an engineering perspective. Unified, global behavior arises from agents that are roughly identical and all function based on roughly the same "program." Additionally, the agents were not carefully placed and connected in predefined ways. Agents can die off, be created, or move around, and yet the system continues to function.

The study of Amorphous Computing therefore deals with large groups of unreliable, identically programmed agents which have no global control and communicate locally in unpredictable and dynamic ways, but which can organize and cooperate to form global tasks. The people involved believe that Amorphous Computing is an extremely powerful idea, and that time is ripe now to develop the fundamental concepts. Microelectronic computing devices are very inexpensive and can be produced in mass quantities. Research into MEMS is also enabling mass production of these devices. Additionally, discoveries in bio-engineering are allowing us to grow large numbers of "programmable" cells more and more easily. Therefore, many applications of Amorphous Computing are becoming possible.

For example, researchers imagine throwing a bunch of microchips into building materials such as paint. These microchips would have simple processors and sensors, and possibly actuators on them, and would be capable of short range wireless communication with the other processors around them. Such paint could then be used to coat things such as bridges. The “smart paint” could then monitor parameters such as traffic loads, wind loads, and the structural integrity of the bridge. The paint could even move around a small amount to cover up cracks. With this large number of sensors, researchers also imagine being able to coat a wall with them and monitoring sensitively the vibrations of the wall. This sensor wall could be used for surveillance purposes or, if the microchips were equipped with actuators, could cancel noises coming through the wall. Another idea is to coat the walls of a clean room with cilia which would move dirt to the corners of rooms or out of a room.

Additionally, much research into applying Amorphous Computing to self-assembling structures has been performed. In particular, researchers have been applying the principles of Amorphous Computing to self-assembling robots to implement completely decentralized control. Another promising area of application is to use the concepts of Amorphous Computing to allow us to effectively program mass numbers of cells to perform tasks. We would thus be able to more effectively harness the power and computing, sensing, and motion abilities of cells in ways that living organisms do.

Researchers therefore believe that the study of Amorphous Computing concepts is an important new direction in computer science to explore that will yield many useful results. The people in the group are interested in developing the fundamental ideas and programming languages to analyze, design, and control large systems of cooperating agents. There is an emphasis on finding conceptual primitives and means of abstracting and combining these primitives in order to construct a language with which to talk about and program these agents with. The idea is to create robust ensembles of agents which are immune to individual agents breaking and constantly changing numbers and positions of processors. Since researchers envision these agents being massed produce, research is interested in not relying on things such as unique identifiers for each agent, global clocks, or beacons to help agents determine their global position. Everything is accomplished through local, decentralized communication. Much of the work is done in simulation using the HLSIM simulator that the group has developed. The group has also done some work prototyping physical systems of these computing agents. Researchers are also interested in using the algorithms and insights developed in Amorphous Computing to better understand the workings of biological processes.

There are two major categories of research in the Amorphous Computing group at MIT. The first category is interested in studying biological processes such as morphogenesis and healing to provide ideas for engineering robust systems capable of organizing themselves on a global scale. A lot of work is done on issues such as getting systems form predefined global patterns and to synchronize the actions of the agents globally using local means. Most of the work currently being done in the Amorphous Computing group falls under this category.

The second category of research is less involved with using the results of developmental biology and is more interested in engineering sensor networks. These researchers work on the issues in ideas such as “smart paint” and other Amorphous Computers. Many of these researchers also work on self assembling robots. There is less work done in this area of research at MIT, however many other schools and research groups are exploring this area in depth.
The Project Idea
Background: The research that I plan to do falls into the first category of research done in the Amorphous Computing group. Radhika Nagpal and Daniel Coore have done a lot of work on getting large groups of immobile agents to form predefined, global patterns. Nagpal and Coore use ideas from developmental biology for inspiration in their work and are focused on defining primitives and means of combination and abstraction to define languages for pattern forming in amorphous agents. Nagpal, Coore, and others have written a number of algorithms and programming languages which allow users to define global patterns abstractly, and then have these patterns compiled into an agent program. The idea is to program every amorphous agent with the same program, and then based only on local communication and the initial conditions of the system have the agents categorize themselves to form the desired patterns.

The ability to define patterns on groups of amorphous agents is an important component to decentralized computing for a number of reasons. The ability for identical cells in a virtually uniform egg or in an undifferentiated sheet to organize into detailed, predefined shapes that are robust in the face of cells constantly dying and being replaced is critical to an organism. Even in fixed cells, being able to define and know where boundaries between regions are is important. Being able to form patterns and shapes in a group of cells gives a way to define regions in a group of cells and to therefore enable different regions of cells to differentiate their functions.

Similarly, in Amorphous Computing systems, the ability to define patterns is important to organizing computing agents and differentiating functionality. The techniques used to form patterns in the agents are also useful in helping to determine the distance and orientation between various regions of agents. Many applications of amorphous systems, including sensing networks, need good ways of figuring out global distance and orientation information.

One of the languages that Nagpal has developed enables the defining of global patterns based on points and lines and the programming of agents to form these patterns2. A user specifies the pattern he or she desires, and then a compiler breaks this pattern down into elements it knows how to implement in an agent program using primitives and means of combining these primitives. Specifically, Nagpal uses a set of “axioms” derived from Origami instructions to break down a pattern of lines into a series of steps that when performed will reproduce the pattern. These axioms are equivalent to a subset of the Euclidean construction axioms. For example, the command “Fold point A onto point B” creates a line equidistant from two points. The command “Fold line L onto line M” creates a bisector of the angle created by the intersection of lines L and M. In addition to a number of other similar commands, there are also commands to define regions delineated by a line. A region on one side of the line can be defined by a point on that side of the line. The instructions always start out with a blank sheet of paper with only four edges defined. Then these commands are used to define lines, points, and regions on the paper.

The compiling algorithm then further breaks down these Origami instruction steps into programs the algorithm knows how to implement in agents using the primitives of gradients and querying neighbors. As Nagpal uses them, gradients in computing agents are analogous to the concentration gradients of morphogens that cells use during development to form structures. The model of computing agents that Nagpal assumes however is an ensemble of immobile agents, and therefore the patterns are not created by “cell” migration. Rather, for each feature in the pattern (a feature may be a line, point, or region) each agent has a Boolean state variable which represents whether or not the agent is a part of the feature. Therefore if we were to equip each agent with a different colored LED for each feature and have the agent turn on the corresponding LED if it was a member of the feature, the various colored lights would be arranged in the predefined pattern on the system of randomly placed agents.

In such an ensemble of amorphous agents then, each gradient can be given a name and a value. In addition, each agent is equipped with a random number generator to generate an ID number. A gradient is originated by an agent transmitting the gradient name and, say, the number zero, along with the agent’s ID number. The agent is only able to communicate to other agents within a given radius (in this application, there are seven to eight agents within a given agent’s communication radius). These agents then store the ID number they receive, and transmit their own ID number, the gradient name, and the gradient value increased by one. As this process of transmitting a gradient continues, agents will receive gradient signals from multiple different agents. The agent receiving the signals will choose the lowest gradient value it receives, store the ID number of the sender of that gradient value, and transmit that gradient value increased by one.
The primitive of querying neighbors simply enables an agent to ask its neighbors to send their most recent state information. We can now see how an agent program could draw a line segment connecting two points. An agent at one of the points initiates a gradient, while the agent at the other point is waiting to receive a gradient value. Once the gradient has propagated to the second agent, a line can form back from the second agent to the first agent along the path of agents ID numbers that each agent stored when it set its gradient value. The second agent initiates the line formation by setting its boolean variable representing the line to true and transmitting this information.

Each of the Origami axioms can be broken down in terms of queries and sending various gradients. For instance, to implement finding a line equidistant between two points, the agents at the two points each transmit a unique gradient. Agents which receive gradient values can then tell whether or not they are on the line by testing whether or not the two gradient values they receive are approximately equal. Therefore, once the compiler has written the program, each agent can be loaded with this same program. The only initial conditions which need to be set are defining the four sides of the initial “paper”. The agents will then form the pattern autonomously. Furthermore, this method of defining patterns automatically scales to systems of agents of any size.
The Project: Recently, Lauren Clement has done work in the Amorphous Computing group to make lines formed to connect two endpoints in the manner above capable of healing themselves1. Her work aims to enable an amorphous system to maintain a line even if some of the agents that are members of the line cease to function. She outlines two methods of accomplishing this task.

In the first method, the agent which originates the gradient signal continues to output the gradient value even after the line has already been created. All of the other agents also send out their state information at regular intervals. If it has been too long since an agent has updated its gradient value or the ID of the agent sending the gradient, the agent begins to increase its gradient value until it finds another agent transmitting a lower gradient value. The first agent then sets its gradient value to the second agents gradient value and stores that agents ID number. The line continually reforms itself to reflect the most up to date gradient information. Therefore, even if a number of agents in the line stop transmitting, the line will adapt and redraw itself.

In the second method of healing, agents only send their gradient information once, and then reset their gradient values to zero (or the default value). Agents do maintain the ID of the agent which set its gradient value however , and when the agent whose ID is stored does not send out any signals for a certain period of time, the first agent waits to receive a new gradient value. The agent in the line on the other side of the gap will also realize that one of its neighbors in the line is no longer sending data, and the agent then initiates a new gradient. When the listening agent sees this gradient, the agent begins a new line which reaches back to the initiating agent, in effect patching the original line.

My project idea is to incorporate these methodologies for lines to heal themselves into Nagpal’s compiler for creating patterns. Since Nagpal’s language draws patterns using points and lines in the same basic method that Clement assumes, Clements are well fit to become a part of Nagpal’s compiling program. I would like to write the combined compiler to create agent programs written in C so that I might possibly use the compiler to program MICA Motes. MICA Motes are commercially available MEMS with built in processors, wireless radio communication capability, sensors, and batteries. An operating system, called TinyOS, has also been developed for the motes and allows the motes to be programmed in C.

In order to integrate Clement’s ideas with Nagpal’s compiler, Clement’s methods of line healing will have to be expanded slighted. Most obviously, if self healing lines are to be used in a more complex pattern, the algorithm for healing must be able to handle there being multiple lines and gradients, and also be able to handle the intersection of lines. Dealing with multiple gradients and the intersection of lines should be a fairly straightforward process of enabling agents to store and transmit information for more than one gradient and to be able to compare whether or not gradient names are the same or different. Adding support for multiple gradients should also allow Clement’s second method for healing line breaks to be able to handle multiple simultaneous breaks.

I would also like to implement a way of determining which of Clement’s methods of line healing to use depending on the type of break. As Clement notes in her research, the first method is appropriate for large breaks in the line where it makes sense to redraw the entire line over again. The second method makes more sense to use in healing small breaks in the line. In the second method, all functioning parts of the original line stay in the line and new lines are only created to bridge holes in the line. Using simply a measure of how large of a gap exists in the line can be one heuristic for determining which method to use in healing the line. Agents can tell the distance between the separated ends of a line using gradients.

Incorporating these self-healing features into Nagpal’s compiler would allow users to create patterns that would be able to sustain themselves indefinitely, even in the face of malfunctioning agents. Additionally, it would be a good test of the concepts that have up to now only been simulated to be able to program MICA Motes, or other physical agents, to run the instructions created by Nagpal’s compiler. I envision programming the motes by either enabling Nagpal’s compiler to output C code that can directly be used to program the motes, or to write a program in C that can be placed in the motes memory and interpret Nagpal’s compiler output format.
Technical Risks

Most of the risks in the project have to do with incorporating motes. Fortunately, this step is not critical to the project. In particular, I am not about the availability of the motes, both in terms of my ability to find funding to buy the number of motes I would need to make a useful demonstration, and on the ability of the manufacturing company to produce the number of motes I might need. In order to perform a somewhat useful demonstration I believe I would require at least fifty motes, and ideally a whole lot more.

Additionally, I plan on placing LED’s on the motes in order to make the patterns drawn on them visible. The motes do not come with controllable LED’s, and therefore I need to find out how easy it would be to expand the motes to control LED’s.

Another point I am not sure about is what sort of instruction format Nagpal’s compiler currently outputs in. Depending on how high level the output is, it may end up being too much work to translate this output into a program that the motes can perform.

Milestones

The following are the project milestones I would like to achieve and the timeline I would like to try to follow:

- Find out detailed specifications for MICA Motes. Need to find out how much they cost and if I could obtain a reasonable number. Also need to find out how use them to drive LED’s: March 2003.

- Understand more fully the algorithms and existing code for Nagpal’s compiler and Clement’s self-healing methods. I would like to be able to significant changes to all of the programs at this point: April 2003.

- Have Nagpal’s compiler augmented with Clement’s ideas fully designed with a design document: July 2003.

- Obtain motes: August 2003.

- Have first draft of code ready for testing: October 2003.

- Have final version of code working: December 2003.

- Have the motes tested running the programs produced by the compiler: February 2003.

- Have thesis written and finished: April 2003.
Resources Required

The major resource I will need access to is MICA Motes or some other physical agent capable of acting in the specified ways. For the motes I will need a large number of multi-colored LED’s. I will also need access to the code and the specific design documents that both Nagpal and Clement have created. Additionally, I will need at least some ability to talk with Nagpal and Clement to help me to understand their ideas and to help me extend their algorithms. I will also need access to a working version of the HLSIM simulating program. This program is available for download from the Amorphous Computing website.

What is Next

The next step in this project will be to propose this idea for a project to Dr. Nagpal and get her feedback on it. The idea for the project may change based on her input. I would also like to find out whether or not she would agree to supervise the project.
1 Web Document: “Robust Methods for Amorphous Self Repair,” Clement, Lauren. Summer 2002. http://www.swiss.ai.mit.edu/projects/amorphous/Robust/laurenc/amorphous/

2 “Programmable Pattern-Formation and Scale Independence,” Nagpal, Radhika, International Conference on Complex Systems (ICCS), 2002.

