Master of Engineering Preliminary Thesis Proposal for 6.191
— Prototyping Research Results

Oskar Bruening

6th December 2002

Massachusetts Institute of Technology



Introduction

The speed at which computers run these days is amazing. According to Moore’s law, computers
double their speed every 18 month. This increase in processing speed is not due to one single factor,
but many of them. Computers these days run at lower voltages and higher clock speeds. The size of
the transistors has been decreasing with the increase in speed. Modern processors are stacked with
speed-increasing tricks like multi-stage pipelines allowing the processor to run several instructions
almost simultaneous. New technologies are explored in every possible direction. New architectures
for future processors are developed everywhere. With Moore’s law holding, people start asking
more and more “how much longer?”. As chips get smaller and more complex certain quantities
still remain quasi-constant, like the wiring of a chip to its memory unit. In order to increase speed
without necessarily decreasing the size of the chips, other approaches considered.

It appears like much research is focused on turning computers parallel. Of course, a computer
with two chips can run twice as fast. The ideal of “the more processors, the better” still holds in
modern super computers. However, by connecting thousands of individual processors to one giant
computer, problems like efficient and equal distribution of processing jobs arise. An alternative to
the supercomputers are the so called Beowulf clusters, usually a cheaper option. A Beowulf cluster
consists of many individual computers connected together through a local area network (LAN) to
one large identity. On Beowulf clusters the problem of efficient and equal job distribution is even
more dramatic. Since the computers are connected through a network, which only has a limited
bandwidth, communication between the different computers also becomes a major factor for these
computations. In addition, for both, the super computer and the Beowulf cluster, the programmer
has to have sufficient background knowledge on the working and the weaknesses of the network
in order to be able to design the computational algorithm in a way that it can be executed in a
parallel fashion. The development of efficient parallel algorithms, leaving no node idle is difficult
and challenging work.

This is where the Raw Processor comes into play. The Raw chip is a completely new architecture.

Unlike other architectures, like the x86, which are based on previous processors and carry many extra



functions with them, allowing for backwards compatibility, the Raw chip has been designed from
scratch. The Raw chip uses the idea of parallel computation at a much lower level.

The Raw chip itself consists of a grid of 4-by-4 processors. Every processor consists of a processing
and a local memory unit. In addition every processor in the Raw chip enjoys an additional feature
unique to the Raw architecture. Every processor is equipped with a so called switch. The switch is
a four directional bus connector, linking the processor with the four surrounding processors. This
allows the processor to talk at the assembly level to its neighbors and therefore does not need to go
through the different levels of networking, such as network protocols in order to speak with another
neighbor. Communication and data sharing happens at instruction cycle speed. The switch is an
integral part of the processor. It’s instruction set, vaguely based on the clean RISC architecture
instructions of the MIPS chips, is extended to allow for the given communication. In addition, the 16
tiles are easily extendable. Simply plug in another Raw chip and you have twice the computational
power. When doing actual computation, those 16 tiles can then be split up to do several jobs. Four
tiles could do this while an other 4 could do that to make the overall computation most efficient.

The Raw chip has been designed in corporation with the MIT Oxygen project. The chip is built
for flexible signal processing. A Raw chip can be programmed to do almost any signal processing
task, like a sound, video or TV card in a computer. This is where the fundamental difference of the
Raw chip to other common processors lies. The Raw chip uses so called free-gates. The hardwiring
of the chip can be programmed using human readable programming languages like Java and C.

Consequently, for any signal processing job, the Raw chip is all you need.

Project Description

I will be designing and implementing the software end of a one-gigabit Ethernet router. Cemal
Akcaba, also working for Prof. Agarwal, will be implementing the hardware related side on the
evaluation board. The evaluation board consists of one Raw chip surrounded by FPGAs (Field
Programmable Gate Arrays) to allow for hardware Raw-Pre-Processing. Cemal will in particular

build an Ethernet packet processor, recognizing the individual packet frames.



A one-gigabit Ethernet packet processor is a very suitable application to test the performance of
the Raw processor and will be primarily used as a demo, a proof of concept showing the capabilities
of the new evaluation board and the Raw processor.

My project is to build the software running on Raw for the router. Cemal Akcaba will be
building the Ethernet controller handing over identified packets from the Internet to the Raw chip.
My software will take the packets, analyse the location to which they are going and send them out
again through another Ethernet controller. It is important to understand the difference between
a hub and a switch (the router is a specialized version of a switch). The hub simply connects all
connections coming in with each other, like one big street intersection. When one end sends a
package all other connectors receive. When two ends send packages into the connector the packages
are lost and have to be resent. This is called a collision. It is clear that even though a hub might
run well for small networks, the bigger the network, the more connection, the more collision, the
slower the network.

Switches on the other side can be considered smart hubs. They do not simply connect all incoming
lines, but rather accept all packages coming in, analyze where they are going using a look-up table
and send them though the one and only link that leads to the target. Consequently, by not just
connecting lines, but accepting, analyzing and sending packages, the router is like a small computer.
The Raw chip is ideal for this kind of signal processing.

Assuming four connectors to the router Cemal Akcaba and I are building, the task can easily
split up between the different tiles. One input tile will, if necessary, assist the FPGAs in recognizing
and isolating the individual packages. A second output tile will then also be in charge of sending
packages. The remaining eight tiles can then accept packages from any of the input tiles, analyze the
packages in a store-and-forward fashion and redirect it to the corresponding output tile. Therefore,
this Raw switch will act as type shared-memory switch, only now more than one package can be
processed data time, avoiding the switch’s own processing speed as bottleneck of the network.

The difference between a hub, a switch and a router is the level of abstraction it does it’s analyses

on. A hub works at the physical level, simply connecting wires. A switch works at the so called



Datalink level, looking at the packages and where they are going according to the MAC address. The
router the package analyses runs at the network level. Instead of simply analyzing the MAC address
and basing the redirect on this, the router looks at the actual IP address to do the redirecting, but
does not differ otherwise from the operation of a switch. Running at the network level only adds
slight complication, as the router needs to understand the network protocol (IP), while the switch
only needs to deal with the package header embedded information.

Initially I intend to build a switch first and on successful completion extend it to a router. When
converting the switch to a router, potentially the eight tiles used for analyses can be divided up in

two or three for the package analysis and five or six tiles for the network protocol related analysis.

Project Break Up (and Milestones)

The project can be broken up into several parts. These parts will most likely be implemented in the
suggested order, since it represents a logical proceeding. All sections marked as ’optional’ are not
necessary to make a simple switch work, but present interesting and challenging expansions allowing
the switch / router to compete (and be compared to) modern industrial devices. In addition, easy
implementation of additional feature would proof the obvious flexible advantages of a Raw chip to

VLSI designed chips.

In- and Output Tiles

These are the tiles that interface with Cemal Akcaba’s Ethernet controller. Once we get started on
the project a protocol between the Raw chip and the FPGAs has to be developed. The in and output
tiles will implement this protocol allowing the Raw chip to receive, manipulate and send packages.
This is a potential error 42 part of the project and therefore might be delayed to a later point in
time, when the Ethernet controller is working. Until then, small simulations can be written faking
the receiving and sending of packages to the remaining of the Raw chip to allow for development on

those parts.



Package Analysis

This accounts for most of the work the Raw chip has to do. The analysis can be structured into

individual subsections, each accounting for separate milestones in the project.

Header Recognition

The first thing to do with an incoming package is to extract its header and from the body. Further
the target MAC address has to be identified. Since the format of a package is standardized this

should not be a hard thing to do.

Target Identification

The Raw chip now needs to do a lookup to find the out where the package needs to go. This, two,
the lookup of port to target MAC address is fairly simple. It could be made more complex by doing

more regular expression like pattern matching instead of one-on-one matching.

Lookup Table Maintenance

Initially the switch does not know where to send the package since it does not know, which MAC
address corresponds to which port. The lookup table by a method called transparent bridging. If
the MAC address of an incoming packages does not yet exist in the the address is added and marked
as being in the learning state. The package is then flooded, meaning it is sent to all available ports,
except the one it came from. When then a package returns from that very same address, the port
is marked and the link is established. From now on all incoming packages for that address will be
forwarded through the right port. Using this set up also package filtering can also be implemented,
by knowing which address go which way and if a package comes of which we know it came the wrong

way, it can be canceled.



Spanning Trees (optional)

Switches work well in a star-network, but in ring-networks more than one way leads to a computer
and the switch needs to take many possible routes into account that lead to the same target.
Therefore the previously given set up will not work effectively. The Digital Equipment Corporation,
therefore developed the spanning tree protocol (STP) standardized in the IEEE 802.1d. The spanning
tree allows for multiple possible ports directing a package to the same address. Using the spanning
tree algorithm (STA) the ports are weighted so the shorter connection to a certain address is favored
over a longer one. In order to make the switch / router more useful for general applications, this

part would be an interesting extension.

Router (optional)

There are when turning the switch into a router a few extra algorithms have to be implemented.

Internet Protocol

The Internet Protocol (IP) would have to be implemented. An algorithm, potentially running on its
own tile, has to parse the incoming packages and recognize the IP addresses other other IP header
related information. Since the protocol runs on top of the package layer, this information is not
embedded in the package header, but parsed in its body. A look up tree (and spanning tree, if
implemented) would also have to be added particular for the IP protocol. Additionally the router
needs to be equipped with it’s own IP address requiring a small IP engine, parsing the own IP
address into the IP protocol in the packages.

Using this IP protocol in combination with the package redirecting would turn the switch then
effectively into a router. However there are more options that make a router more useful than the

switch.



Firewall Filtering (optional)

For network security reasons, modern routers are equipped with filters to reject unwanted packages.
Implementing dynamic filters could potentially be an interesting part of the project.
Configuration Dialup (optional)

Since the router is part of the network with its own IP address, modern routers allow the user to dial
up to them and configure them through the dialup. This would be another challenging extension.
VLAN Support (optional)

To organize large networks and large network grows, Virtual Local Area Networks (VLAN) have
been developed allowing a number of computer connected through the router to be considered as

own domain.

Resources Required

The single most important resource is a working, programmable Raw chip, ideally on an evalu-
ation board. In addition, for software development a simulator of the raw chip is desirable. To
my knowledge the simulator and the Raw compiler (rawcc) already exist and are therefore not a

bottleneck.

Technical Risks

Not many technical risks exist. Most of the tools have already been developed. Only the evaluation
board and the interface with the Ethernet controller developed by Cemal Akcaba could produce

error #42 problems.



What’s Next

During the last semester of my final year in spring 2003, I plan on working as a UROP for Prof.
Agarwal. I will study the Raw chip and its possibilities and limitations in more detail and experiment
with it to get a feeling for the chip. In addition, I will make more concrete outlines for the individual
parts of the programs and start implementing smaller sections for testing purposes. By the end of
the term I should have a good feeling about what and how it will actually be implemented for my
M.Eng. thesis. During summer and Fall 2003 and spring 2004 I plan on staying here at MIT working

on this thesis in order to graduate in June 2004.



