
Jacob Hyman
6.191

Proposed Research Topic

 The bulk of this term in 6.191 has been spent examining various technologies

currently being researched at MIT for the purpose of developing a Meng thesis project.

Outside of my major in computer science, I have an interest in psychology, so I was

looking for technology that could be used in demonstrating how people think about or

interact with computers. After an initial exploration of research groups at MIT, I was

interested in exploring a topic relevant to the research the Sociable Media Group (Media

Lab) is doing. However, a meeting with the group revealed the technology they were

investigating was not what I expected. Additionally, the head of the group did not seem

very excited about picking up a Meng student at this time. Pursuing things further

seemed to benefit neither party.

 Further exploration lead to the area in which I am now focusing. The dynamic

invariant detection being worked on by Prof. Ernst in the LCS Software Design Group

presents an interesting computer science problem with the plenty of room for future

research. Most importantly, there is a lot of potential for demonstrating a way in which

this technology can improve a programmer’s ability to create or modify code.

 To understand the primary technology involved in Daikon (the program that

dynamically detects invariants), a reader must first know what an invariant is. Simply

put, an invariant is any property that holds true during various points of program

execution. For example, if three variables a, b, c are always related by the equation c2 =

a2 + b2 during every execution of a loop, c2 = a2 + b2 is an invariant for that loop.

Examining what kinds of invariants Daikon can detect will help answer the question of

why these invariants (and Daikon) are useful. Consequently, the following description of

Daikon will be more concerned with what it does, and only briefly describe the general

strategy used to accomplish the invariant detection.

 A brief overview of how Daikon detects invariants will help explain some of the

limitations of dynamic invariant detection. The most important fact to note is that the

dynamic detection of invariants relies on both a program and its input. Daikon generates

possible invariants by looking at the values of program variables during important points

of execution. The values of these variables are usually dependent on input, so the quality

of invariant detection is a function of input. Input that presents a wide variety of values

to a given variable will lead to detection of more meaningful invariants, while one run of

the program on a simple input set will result in only a few generally poor invariants.

 Knowing that Daikon’s detection ability is decided by what input a program is run

over, it is logical to examine what types of invariants Daikon looks for. The first class of

invariants that Daikon tries to recognize is simple variable invariants. An invariant that

holds over any single variable (e.g. variable a is never assigned to null) falls into this

classification. Numeric invariants among up to 3 variables (e.g. a < 5 or a + b < c) also

fall into this categorization. The last types of invariants in this classification are

invariants over sequences and those involving a sequence and a number. These features

allow Daikon to detect whether or not a sequence is sorted or whether or not a sequence

contains a certain value.

 Diakon also has the ability to detect invariants about code objects. These types of

invariants are sometimes referred to as representation or class invariants and are studied

in great detail during 6.170. These invariants can help other programmers treat objects

like black boxes to build code around because they can be used to describe pre-conditions

and post-conditions for an object’s methods. What this means is that if the input meets

certain specifications, the output will always meet certain specifications. Object

invariants are also useful to a programmer because they can be used to determine whether

their code for the representation is correct. For example, if a programmer designs a class

that relies on the assumption that a string is always null- terminated, he can run Daikon

and see if this invariant holds. If the invariant does not hold, the programmer has made

an error in assuming strings will always be null-terminated and his code may be

incorrect.

 In addition to invariants over variables explicitly declared in code, Daikon has the

ability to detect derived variable invariants. Using variables declared in the code, the

program derives implicit variables. These implicit variables can be used in new invariant

relationships. Listing what types of derived invariants Daikon can detect will make this

process clearer. Daikon can detect derived invariants over any sequence (e.g. the length

of a sequence < 10), a numeric sequence (e.g. the minimum value in a sequence is 0), and

a sequence and numeric value (e.g. properties of subsequences). Additionally, Daikon

has the ability to determine information about function calls. In determining derived

variables Daikon has to be careful because derived variables can lead to further derived

variables and Daikon could theoretically derive new variables forever. This problem is

solved by placing a user-defined limit on how many iterations to use when determining

new derived variables.

 With all these possible invariants to look for, Daikon needs strategies to eliminate

invariants that are not of use to a programmer. The first step in this elimination is that the

program is designed to only look for invariants that are described as “basic, general, and

useful” by Prof. Ernst. Prof. Ernst has developed a sense for what invariants are useful

over the course of his career and it is beyond the scope of this paper to explain this notion

in any more detail. Additionally, Daikon considers the comparability of variables before

deciding to see if relations hold between them. Comparing an integer’s and a string’s

size does not make much sense. After restricting the invariants looked for, Daikon also

has methods to eliminate invariants that it determines are useless during detection. If the

existence of one invariant implies the existence of another invariant, only the first

invariant needs to be tested for. The last step in invariant elimination involves testing

how statistically valid an invariant is. Relationships that only appear once during all

executions of code are probably not meaningful and possibly not even correct. To deal

with this problem, Daikon allows the user to set parameters on how statistically relevant

an invariant needs to be before it is reported.

This paper has not presented a comprehensive list of the types of invariants that

Daikon can detect, but it has outlined the majority of invariants. From this information,

the reader should be able to develop a good idea of what Daikon is capable of doing.

This idea of what Daikon can do leads into the question of why invariant detection is

useful. One possible use of this tool is to recover formal specifications from code that

has none provided by the programmer. Formal specifications describe how to use a piece

of code as a black box. When a programmer tries to incorporate someone else’s code

into their design, all too often there are very limited specifications described for how the

code should behave. The ability to recover undocumented specifications allows a

programmer to utilize another person’s code with more ease and confidence. The same

advantages hold true for using any undocumented code. Program invariants can allow a

programmer to see how data structures are organized and even how the original

programmer envisioned the code working. Interestingly enough, Daikon’s detection of

invariants allows the latter to hold true even if the programmer did not have a conscious

idea of his design strategy. Also, invariants can help the original programmer in finding

bugs, determining if changes made to the code had unexpected effects, and even

determining if a test suite is comprehensive in its scope. There have been several small

studies on various code (examples from students, textbooks, and test suites) that show

that Daikon does help in the mentioned areas. However, the existing data is very

qualitative in nature which may not convince people of Daikon’s usefulness.

My goal in demonstrating this technology is to show that Daikon can be a very

useful tool to help increase a programmer’s productivity. Prof. Ernst has listed several

areas in which he would like to see research continue on Daikon. I feel that a few of

these areas could lead to information which can be used to demonstrate how useful

Daikon can be to programmers. The first area is simply more user studies. As mentioned

before, I have a strong interest in psychology and am very curious as to how a tool like

Daikon can change a programmer’s strategy when designing code. After meeting with

Prof. Ernst, it is very apparent that he feels more user studies would greatly improve the

ability to explain the usefulness of Daikon. Additionally, user studies would help

determine what types of invariants are most useful to programmers and lead to adding

new invariants for Daikon to detect. For example, Prof. Ernst is interested in exploring

temporal invariants (something holds at a certain time) and cond itional invariants.

Implementation of these invariants along with testing could be very useful in

demonstrating Daikon’s potential. The final area of future study involves the interface

with which a user interacts with Daikon. Invariants are only useful if the programmer

can use them efficiently. A better interface will allow the user to intuitively select what

types of invariants are important to their task. The detected invariants can then be

presented to the user in a manner that is best suited to their current programming task.

There is even potential for AI development in determining what invariants to report to the

user.

 The end goal of this research is to demonstrate Daikon as a marketable tool and

clearly show how it can improve a programmer’s efficiency. The package would

probably include a suite of tests that show Daikon’s ability, statistically significant data

from user studies, and a demonstration of the improved interface. The package should

allow a programmer to sit down and use Daikon to help them create or modify code

almost immediately.

 My proposed plan is not without potential difficulties. At this point I do not have

a position in Prof. Ernst’s group. We have discussed my interests and ideas for the

project, and both of us are deciding whether or not it would be mutually beneficial to

pursue these ideas further. The other main obstacle is the difficulty in conducting

usability studies for a tool like Daikon. A study that would reveal quantifiable data may

be too difficult to complete given the nature of the tool. However, in the course of

working with Daikon, other areas of study will undoubtedly reveal themselves.

 In conclusion, I present a schedule to complete this project. In the spring of 2002,

I hope to start working in Prof. Ernst’s group as a UROP and become familiar with using

Daikon. Near the end of the term and during the summer I would develop and begin

carrying out a usability study. By the end of the summer I will have begun coding any

GUI enhancements or new invariant detection algorithms. During the fall of 2002, I hope

to finish up the studies and complete the coding I started during the summer. This leaves

the spring of 2003 to write my thesis and present my work.

