
Joe Hastings 

Toliver Jue 

6.191 Final Project Proposal 

December 7, 2001 

 

Libasync-mp: A Multiprocessor Aware Asynchronous Programming Library Based Upon Libasync 

 

This paper describes extensions to a project Joe Hastings conducted along with Mark Rosen, Benjamin 

Pick, and William Friedman for 6.824, taught by Professor Robert Morris of the PDOS group at LCS, of 

the same name.  Mark and Joe co-developed the code relevant to this paper while Benjamin and William 

worked on other aspects of that project.  Mark, Toliver, and Joe are interested in extending this project or 

working on complementary projects under Professor Morris for our MEng theses.  We feel that we obtained 

very promising results from our project and have made plans to discuss our results with Professor Morris.  

However, we have not received any commitments from Morris regarding his acceptance of the project as 

our advisor. 

Toliver Jue worked on an independent project for 6.824, but has the same interests as Mark and Joe.  Thus, 

we three would like to form a larger MEng project on asynchronous programming. 

Overview of PDOS and libasync 

The Parallel and Distributed Operating System Group (PDOS) is a multifaceted group with research in 

many topics related to Operating System architectures and services, networking, and languages.  All these 

topics are crucial in the building of large-scale parallel and distributed systems. 

 

Projects of the group include Click, SFS, and libasync.  Click is a flexible and modular router that runs on 

many commodity systems .  Different configurations are easily composed with small elements such as 

queues, packet schedulers, and dropping policies that are “clicked” together.  For distributed systems, the 

re-configurability of Click proves important for components that may fail and configurations that need to 

adapt.  The Self-Certifying Filesystem (SFS) is a secure filesystem with decentralized control.  This 

filesystem is important to distributed systems that will need to talk to each other and access each other’s 



data.  Finally, libasync is an asynchronous library that can be used by programmers to simplify many of the 

parallel constructs they may need to use. 

 

Libasync is the focus of our Masters theses.  Work done so far for a final project in a course (6.824) has 

been to make a multiprocessor version of Libasync, called Libasync-mp.  Constructs added were the ability 

to more fully utilize multiple processors for asynchronous events to improve the efficiency of executing 

code. 

 

Technologies Used in Libasync-mp 

Unlike other MEng projects presented in 6.191, this project does not use technologies specific to the PDOS 

research group.  Due to the nature of PDOS, their technology can be thought of as knowledge of how to use 

programming techniques to develop distributed and parallel programs.  However, this project does take 

advantage of two cutting-edge technologies not developed at PDOS: the FreeBSD kevent API and POSIX 

Next Generation Threads.  These two tools were essential to creating libasync-mp and we will discuss each 

of them in this section. 

     The FreeBSD kevent API is a replacement to the select/poll method traditionally used to write 

asynchronous code.  The select / poll system calls present in all modern Unix systems (not limited to 

FreeBSD) allow a program to register the intent to be notified by the kernel whenever a particular file-

descriptor (a unique identifier given to each file and socket a program uses) is ready to be read to or written 

from.  However, this API is not re-entrant with respect to kernel threads, meaning that a multi-threaded 

program cannot safely use these calls without taking extreme care.  While select / poll work great in the 

original libasync, the design of libasync-mp requires a thread-safe alternative.  The actual implementation 

of kevent is far beyond the scope of this paper, but more information is provided in the report Joe prepared 

for 6.824. 

 POSIX Next Generation Threads are a means of providing M : N, user : kernel, thread mappings.  

They are not a technology per se but rather a POSIX standard library meaning that all modern Unix 

vendors must support the API if they claim to be POSIX compliant.  To briefly describe what this means, a 

user-thread is an abstraction of a virtual process that exists only in the user-space portion of an 



application’s address space.  The kernel, the piece of the OS responsible for allocating processes to 

different CPUs in a multiple-processor system (among many-many other things), thus is not aware of them.  

A kernel thread, however, is a virtual process that the kernel schedules directly.  User-threads are 

efficiently handled by a threading library such as pthreads (POSIX threads) while kernel threads are very 

expensive to maintain because kernel operations are in-general orders of magnitude more expensive than 

user-level operations.  Thus, POSIX Next Generation threads allow for the efficiency of user-level threads 

to take advantage of multiple processors by mapping M user-threads to N kernel-threads (typically N is the 

number of processors).  POSIX Next Generation threads are important for the project because unlike many 

unixes (such as Linux), FreeBSD4.x does not support native kernel threads, meaning that it would be 

impossible for us to write code using multiple processors that shared an address space.  However, the 

POSIX Next Generation library takes advantage of a hack to FreeBSD that uses a specialized function 

called rfork to give the illusion of kernel threads to the OS.  Again, the specifics of these actions are well 

beyond the scope of this paper. 

Specific Extensions of Libasync-mp 

There are many challenges remaining to produce a multiple processor aware version of libasync.  Libasync-

mp currently does not support the same semantics or API of the original libasync due to time-constraints 

and complexity issues.  This means that while it provides the same services, existing code must be re-

written to take advantage of multiple processors.  One possible MEng project in-and-of-itself would be the 

incorporation of our logic into libasync itself rather than our code existing in a separate library.  Mark 

Rosen will most likely do this project with substantial help from myself.   

     Even after libasync-mp uses the same semantics as libasync, there is a complex notion of which 

programs can be safely re-linked with our library without any re-coding.  In general, the move from a 

single processor system to multiple-processors introduces a plethora of synchronization problems, many of 

which are totally unexpected to the programmer.  For this reason, we are interested in providing the 

synchronization support that libasync-mp will need to offer the programs that must be re-coded to work in a 

multiprocessor environment.  Several of these challenges include: 

1. The support of “virtual processor numbers” for different segments of code, indicating which 

code is safe/unsafe to run concurrently. 



2. The support of “mutexed callbacks” which is beyond the scope of this paper, but provide a 

means of putting locks around specific callback functions as they are registered. 

3. The possible writing of code to statically/dynamically detect synchronization errors either 

from source code or run-time analysis.  Ultimately, such a solution might allow programs to 

take advantage of libasync-mp without major rewriting of the problem-areas, or at least to 

help the programmer find such areas. 

The full-scale production of libasync-mp to obey libasync semantics and provide support for 

synchronization protection is a daunting task with more than enough room for multiple MEng projects.   

Possible Timeline 

Assuming that we can obtain an advisor, we would like to begin expanding upon the code Joe and Mark 

wrote for 6.824 immediately and to make substantial progress during IAP 2002.  We do not plan on having 

a great deal of time to work on the project during the Spring semester although we will be taking classes 

that will aid in our ability to perform the project.  We then plan on working during the summer of 2002 and 

hopefully having a somewhat debugged version of the library produced by the beginning of the fall 

semester. This library will require a great deal of testing before it can be safely applied to large-scale 

projects such as SFS that take advantage of the existing libasync.  Hopefully, testing during the fall 

semester of 2002 will facilitate a final re-coding during IAP 2003 and the project will be completed during 

Spring 2003. 

Risks and Mitigations 

The greatest risk facing the project right now is the current lack of advisor support.  The PDOS group is 

interested in pursuing the project but has not yet decided to grant the project to our particular team.  There 

are several graduate students at PDOS interested in pursuing similar projects themselves.  Apart from 

lacking an advisor, the project’s only other risk is our inability to produce a library with libasync-like 

semantics.  Also, the synchronization issues may become too large to be addressed by an MEng level 

project.  However, our initial short-term success during the 6.824 project has given us hope that we can 

reach the project’s full goals. 


