
6.801/6.866 Machine Vision

Final Exam
Assigned: 11/21/02

Due: 12/05/02 at 2:30pm

Problem 1 Line Fitting through Segmentation (Matlab)

a) Write a Matlab function to generate noisy line segment data with outliers, similar
to that shown in Figure 15.9/15.10. You should presume Gaussian distributed
noise (in y) and uniformly distributed outlier noise. Your function should have
the following syntax:

function [X,Y] = create_line(a,b,x1,x2,var,perc_out,range_out)

The output parameters [X,Y] are samples of the line baxy += between x=x1 and
x=x2. The input parameter var is the variance of the Gaussian distributed noise,
perc_out is the percentage of outliers and range_out is the outlier range.

For each implementation (b), (c), (d) and (e), below,

(i) Plot cases where your implementation succeeds;
(ii) Plot cases where your implementation fails and discuss why it fails;
(iii) Discuss the effect of each input parameter on the algorithm;
(iv) Submit your files and print a copy of your code.

b) Implement a simple least-squares fit of the line. Your function should have the

following syntax:
function [a, b] = fitline(X, Y)

c) Implement a Hough transform accumulator array, and a simple maximum peak
finder. Test this for different granularities of parameter sampling on single-line
datasets with varying amounts of normal and outlier noise. Your function should
have the following syntax:

function [a,b,M] = hough(X, Y, r_min, r_max, r_step, theta_step)

where [r_min, r_max] is the range of the line distance from the origin, r_step is
the incremental step between radius samples and theta_step is the incremental
step between angle samples. The mask vector M is set to 1 when the point is an
inlier and 0 when an outlier.

d) Implement a RANSAC approach (Algorithm 15.4) using the least squares
distance metric described in section 15.2.1. Test it on single-line datasets with
varying amounts of normal and outlier noise. Your function should have the
following syntax:

function [a, b, M] = ransac(X, Y, n, max_it, thresh, min_inliers)

where n is the number of points sub-sampled to fit a line, max_it is the maximum
number of iterations, thresh is the threshold used to identify inliers and min_in
is the minimum number of inliers.

e) Implement an EM approach to estimate a fixed number of noisy lines (Algorithm
16.4) and add an outlier model (section 16.4.2). The simplest way to do this is to
consider a mixture model with the last mixture component is not a line, but a
process that generates outlier points with uniform probability. Your function
should have the following syntax:

function [a, b, W] = em(X, Y, perc_out, range_out, W_initial)

where perc_out models frequency with which outliers occur, range_out is the
range of the uniform outlier process and the vector W_initial is the initial weight
values. The output parameter W is the final weight vector. Don’t forget to define
a convergence criterion.

Test your implementation on single- and multiple-line datasets with varying
amounts of normal and outlier noise.

f) Outline a possible graph theoretic approach to segmenting this data using a
normalized cut criterion.

Problem 2 Line Fitting through Filtering (Matlab)
In this problem, we view the line fitting task of Problem 1 as an online filtering

problem. The x coordinate of each point on the line will be treated as the (discrete) time
variable. We will then estimate the sequence of y coordinates based on noisy
measurements generated as in Problem 1(a). For both of the implemented algorithms,
present your results as in Problem 1, (i)-(iv).

a) Implement the Kalman filter for tracking linear dynamic systems based on
observations corrupted by Gaussian noise. Assume the line is generated by a
constant velocity state space model. Your filtering function should have the
following syntax:

function xHat = kalman(Y,D,SigmaState,M,SigmaObs,Sigma0)

Here, Y is a vector of scalar observations, (D,SigmaState,M,SigmaObs)
are the standard state space model parameters, and Sigma0 is the covariance of
the (zero mean) initial state. The output xHat should be a matrix where each
column gives the mean estimate of the hidden state at a different point in time.
Choose values for the system noise parameters that are appropriate to the line
fitting problem. In particular, you should have a large initial state variance, but a
fairly small process noise variance.
 Test your Kalman filter implementation on measurements containing only the
assumed Gaussian noise, and also on data sets with large numbers of outliers.

b) Particle filters do not share the Kalman filter’s restriction to Gaussian
observations. Implement the standard particle filtering algorithm (Forsyth &
Ponce, Extra Chapter 2, Alg. 2.5) for tracking a linear dynamical system based on
a sequence of scalar, non-Gaussian observations. Your filtering function should
have the following syntax:

function xHat = pfilter(y,D,SigmaState,M,SigmaObs,Sigma0,

 N,perc_out,range_out)

The first six parameters are the same as for the Kalman filter, N is the number of
particles, and (perc_out,range_out) are the parameters of the outlier
process. Your particle filter implementation should resample at every iteration,
and use the appropriately weighted average of particle locations as its best
estimate of the line position.
 Test the particle filter on the same measurement sequences used for the
Kalman filter. Perform five independent runs of the particle filter for each of
three different particle set sizes N = 20, 100, 500, and plot the estimated line
positions.

Problem 3 Steerable Filters

Steerable pyramids received their name because the oriented filters at any one
spatial scale form a "steerable basis set". They are all identical copies of the same filter,
rotated to different orientations. One can synthesize that filter rotated to any orientation
by taking an appropriate linear combination of the basis filters. This lets one analyze
oriented filter response not just at a discrete set of orientations, but over the continuous
range of possible orientations.

Let be a filter kernel, , rotated through an angle,),(yxFθ),(yxF θ . For now,
we ignore sampling issues and work in a continuous (x,y) space. is a steerable
filter requiring M basis filters if we can write

),(yxF

∑
=

=
M

i
i yxFkyxF i

1
),()(),(θθ θ

Here, are the basis filters and),(yxF iθ)(θik are called the interpolation functions.
a) The simplest possible steerable filter is the directional derivative of a radially

symmetric function G(r), where 22 yxr += . Let G be a Gaussian

function. Show that

)(22

)(yxer +−=

x
G
∂

∂ is a steerable filter. Give a set of basis filters and

interpolation functions using the smallest possible number of terms M.
b) Show that the second derivative of a Gaussian 2

2

x
G
∂

∂ is also a steerable filter.

Give a set of basis filters and interpolation functions using the smallest possible
number of terms M.

c) Describe how sampling of these continuous functions at discrete locations on the
pixel lattice affects steerability.

Note: In the general case, the basis filters don't need to be identical copies of the filter to be
synthesized, nor do the steered filters need to be derivatives of radially symmetric
functions.

Problem 4 Mosaics of kite aerial photographs

You attach a camera to a kite, send it up, and take many pictures of the ground,
each from a different position, orientation, and elevation of the camera. Then, you want
to make a composite image, overlaying the photographs into a single image. (See
http://www.ai.mit.edu/people/wtf/kite.html; for example
http://www.ai.mit.edu/people/wtf/kitePics/NVkiteCamFWSSSQuarterSize.jpg or
http://www.ai.mit.edu/people/wtf/mvWeb/mvKite/quarter.jpg.)

http://www.ai.mit.edu/people/wtf/kite.html
http://www.ai.mit.edu/people/wtf/kitePics/NVkiteCamFWSSSQuarterSize.jpg
http://www.ai.mit.edu/people/wtf/mvWeb/mvKite/quarter.jpg

This problem examines under what conditions the overlaid images can be made to
fit together exactly. (See the figures for a visual description of the problem.)

kite and camera (time 1)

kite and camera (time 2)

 photograph from camera at time 1 photograph from camera at time 2

We have two images taken of the same piece of land and we want to know

under what combinations of
(i) assumed camera model,
(ii) assumed terrain model, and
(iii) method of compositing the pictures

can the two images be made to look identical in their region of overlap.
After you take the digital photographs, you form a mosaic using some image

editing program. Assume the objects on the ground are stationary, and we only consider
geometric effects, not photometric effects. (In other words, the objects in the
photographs must line up in the mosaic, but their intensities may differ in the different
images.)

(i) camera models: we can assume either perspective projection, or weak
perspective projection.

(ii) terrain models: we can assume that the land being photographed lies in a
plane, or has arbitrary 3-d shape.

(iii) method of compositing the pictures: say we paste the photographs into
the composite bitmap, then have a choice of two different methods of

adjusting the pasted photographs, corresponding to a choice of two
different image manipulation programs. Using program A, we can
translate, rotate, and uniformly scale each pasted image as we put it into
the composite. Using program B, we can make all those changes and
more: we can independently specify the location of each of the 4 corners
of the pasted image (i.e., we can map the image into an arbitrarily shaped
quadrilateral area, linearly interpolating the pixel positions inside the
pasted image).

2 different methods of compositing the pictures

Composition method 1
allows scaling and rotation

of the photographs:

Composition method 2 allows
arbitrary scaling, rotation, and

linear warping of the
photographs to fill an arbitrary

quadrilateral:

With two choices each for the camera, terrain, and image composition models, we
have 8 possible systems to consider. Under which of those 8 systems can the
overlapped pictures always be made to agree exactly within their regions of
overlap? Explain your reasoning and justify your answers.

You want perfect overlay
of the two photographs in
the region where they
overlap in the mosaic.

Problem 5 Projective Geometry
Exercise 13.6 from Computer Vision: A Modern Approach (Forsyth and Ponce)

Problem 6 State Space Observability

Consider the following linear state space model:
ttt xDx =+1 t

T
tt xMy =

Here, the measurement yt is a one-dimensional scalar for each t, and xt is a k-dimensional
vector. We say that this model is observable is the state can be reconstructed from any
sequence of k measurements.

a) Show that the model is observable if and only if the following matrix has full
rank:























−+−+

++

+

tkt
T

kt

tt
T
t

t
T
t

T
t

DDM

DDM
DM

M

L

M

21

12

1

b) Consider a point drifting in 3D (3IDt =), with a periodically varying observation

matrix: , []TkM 1003 = []TkM 013 01 =+ , []TkM 00123 =+ . Show that
the model is observable.

c) Show that a point moving with constant velocity in an arbitrary number of
dimensions, with the observation matrix reporting position only, is observable.

d) Show that a point moving with constant acceleration in an arbitrary number of
dimensions, with the observation matrix reporting position only, is observable.

