
6.801/6.866 Machine Vision 
 

Final Exam 
Assigned: 11/21/02 

Due: 12/05/02 at 2:30pm 
 
Problem 1    Line Fitting through Segmentation (Matlab) 

a) Write a Matlab function to generate noisy line segment data with outliers, similar 
to that shown in Figure 15.9/15.10.  You should presume Gaussian distributed 
noise (in y) and uniformly distributed outlier noise.  Your function should have 
the following syntax: 

 
function [X,Y] = create_line(a,b,x1,x2,var,perc_out,range_out) 
 

The output parameters [X,Y] are samples of the line baxy +=  between x=x1 and 
x=x2.  The input parameter var is the variance of the Gaussian distributed noise, 
perc_out is the percentage of outliers and range_out is the outlier range.   

 
For each implementation (b), (c), (d) and (e), below,  

(i) Plot cases where your implementation succeeds; 
(ii) Plot cases where your implementation fails and discuss why it fails; 
(iii) Discuss the effect of each input parameter on the algorithm; 
(iv) Submit your files and print a copy of your code. 

 
b) Implement a simple least-squares fit of the line.  Your function should have the 

following syntax: 
function [a, b] = fitline(X, Y) 

c) Implement a Hough transform accumulator array, and a simple maximum peak 
finder.  Test this for different granularities of parameter sampling on single-line 
datasets with varying amounts of normal and outlier noise. Your function should 
have the following syntax: 

 
function [a,b,M] = hough(X, Y, r_min, r_max, r_step, theta_step) 
 
where [r_min, r_max] is the range of the line distance from the origin, r_step is 
the incremental step between radius samples and theta_step is the incremental 
step between angle samples.  The mask vector M is set to 1 when the point is an 
inlier and 0 when an outlier. 

d) Implement a RANSAC approach (Algorithm 15.4) using the least squares 
distance metric described in section 15.2.1.  Test it on single-line datasets with 
varying amounts of normal and outlier noise. Your function should have the 
following syntax: 

 
function [a, b, M] = ransac(X, Y, n, max_it, thresh, min_inliers) 
 
where n is the number of points sub-sampled to fit a line, max_it is the maximum 
number of iterations, thresh is the threshold used to identify inliers and min_in 
is the minimum number of inliers. 



e) Implement an EM approach to estimate a fixed number of noisy lines (Algorithm 
16.4) and add an outlier model (section 16.4.2).  The simplest way to do this is to 
consider a mixture model with the last mixture component is not a line, but a 
process that generates outlier points with uniform probability. Your function 
should have the following syntax: 

 
function [a, b, W] = em(X, Y, perc_out, range_out, W_initial) 
 
where perc_out models frequency with which outliers occur, range_out is the 
range of the uniform outlier process and the vector W_initial is the initial weight 
values.  The output parameter W is the final weight vector.  Don’t forget to define 
a convergence criterion. 

Test your implementation on single- and multiple-line datasets with varying 
amounts of normal and outlier noise. 

f) Outline a possible graph theoretic approach to segmenting this data using a 
normalized cut criterion. 
 

Problem 2    Line Fitting through Filtering (Matlab) 
In this problem, we view the line fitting task of Problem 1 as an online filtering 

problem.  The x coordinate of each point on the line will be treated as the (discrete) time 
variable.  We will then estimate the sequence of y coordinates based on noisy 
measurements generated as in Problem 1(a).  For both of the implemented algorithms, 
present your results as in Problem 1, (i)-(iv). 

a) Implement the Kalman filter for tracking linear dynamic systems based on 
observations corrupted by Gaussian noise.  Assume the line is generated by a 
constant velocity state space model.  Your filtering function should have the 
following syntax: 

 
function xHat = kalman(Y,D,SigmaState,M,SigmaObs,Sigma0) 
 
Here, Y is a vector of scalar observations, (D,SigmaState,M,SigmaObs) 
are the standard state space model parameters, and Sigma0 is the covariance of 
the (zero mean) initial state.  The output xHat should be a matrix where each 
column gives the mean estimate of the hidden state at a different point in time. 
Choose values for the system noise parameters that are appropriate to the line 
fitting problem.  In particular, you should have a large initial state variance, but a 
fairly small process noise variance. 
 Test your Kalman filter implementation on measurements containing only the 
assumed Gaussian noise, and also on data sets with large numbers of outliers.   

b) Particle filters do not share the Kalman filter’s restriction to Gaussian 
observations.  Implement the standard particle filtering algorithm (Forsyth & 
Ponce, Extra Chapter 2, Alg. 2.5) for tracking a linear dynamical system based on 
a sequence of scalar, non-Gaussian observations.  Your filtering function should 
have the following syntax: 

 
function xHat = pfilter(y,D,SigmaState,M,SigmaObs,Sigma0, 

  N,perc_out,range_out) 
 



The first six parameters are the same as for the Kalman filter, N is the number of 
particles, and (perc_out,range_out) are the parameters of the outlier 
process.  Your particle filter implementation should resample at every iteration, 
and use the appropriately weighted average of particle locations as its best 
estimate of the line position. 
 Test the particle filter on the same measurement sequences used for the 
Kalman filter.  Perform five independent runs of the particle filter for each of 
three different particle set sizes N = 20, 100, 500, and plot the estimated line 
positions.   

 
Problem 3 Steerable Filters 

Steerable pyramids received their name because the oriented filters at any one 
spatial scale form a "steerable basis set".  They are all identical copies of the same filter, 
rotated to different orientations.  One can synthesize that filter rotated to any orientation 
by taking an appropriate linear combination of the basis filters.  This lets one analyze 
oriented filter response not just at a discrete set of orientations, but over the continuous 
range of possible orientations. 

Let  be a filter kernel, , rotated through an angle, ),( yxFθ ),( yxF θ .  For now, 
we ignore sampling issues and work in a continuous (x,y) space.   is a steerable 
filter requiring M basis filters if we can write 
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Here,  are the basis filters and ),( yxF iθ )(θik  are called the interpolation functions. 
a) The simplest possible steerable filter is the directional derivative of a radially 

symmetric function G(r), where 22 yxr += .  Let G  be a Gaussian 

function.  Show that 
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∂  is a steerable filter.  Give a set of basis filters and 

interpolation functions using the smallest possible number of terms M. 
b) Show that the second derivative of a Gaussian 2
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∂  is also a steerable filter.  

Give a set of basis filters and interpolation functions using the smallest possible 
number of terms M. 

c) Describe how sampling of these continuous functions at discrete locations on the 
pixel lattice affects steerability. 

Note: In the general case, the basis filters don't need to be identical copies of the filter to be 
synthesized, nor do the steered filters need to be derivatives of radially symmetric 
functions. 

 
Problem 4    Mosaics of kite aerial photographs 

You attach a camera to a kite, send it up, and take many pictures of the ground, 
each from a different position, orientation, and elevation of the camera.  Then, you want 
to make a composite image, overlaying the photographs into a single image.  (See 
http://www.ai.mit.edu/people/wtf/kite.html;  for example 
http://www.ai.mit.edu/people/wtf/kitePics/NVkiteCamFWSSSQuarterSize.jpg or 
http://www.ai.mit.edu/people/wtf/mvWeb/mvKite/quarter.jpg.) 

http://www.ai.mit.edu/people/wtf/kite.html
http://www.ai.mit.edu/people/wtf/kitePics/NVkiteCamFWSSSQuarterSize.jpg
http://www.ai.mit.edu/people/wtf/mvWeb/mvKite/quarter.jpg


This problem examines under what conditions the overlaid images can be made to 
fit together exactly.  (See the figures for a visual description of the problem.) 

 
kite and camera (time 1)

kite and camera (time 2)

 

  
           photograph from camera at time 1 photograph from camera at time 2 

 
We have two images taken of the same piece of land and we want to know 

under what combinations of  
(i) assumed camera model, 
(ii) assumed terrain model, and  
(iii) method of compositing the pictures  

can the two images be made to look identical in their region of overlap. 
After you take the digital photographs, you form a mosaic using some image 

editing program.  Assume the objects on the ground are stationary, and we only consider 
geometric effects, not photometric effects.  (In other words, the objects in the 
photographs must line up in the mosaic, but their intensities may differ in the different 
images.)  

(i) camera models:  we can assume either perspective projection, or weak 
perspective projection. 

(ii) terrain models:  we can assume that the land being photographed lies in a 
plane, or has arbitrary 3-d shape. 

(iii) method of compositing the pictures: say we paste the photographs into 
the composite bitmap, then have a choice of two different methods of 



adjusting the pasted photographs, corresponding to a choice of two 
different image manipulation programs.  Using program A, we can 
translate, rotate, and uniformly scale each pasted image as we put it into 
the composite.  Using program B, we can make all those changes and 
more: we can independently specify the location of each of the 4 corners 
of the pasted image (i.e., we can map the image into an arbitrarily shaped 
quadrilateral area, linearly interpolating the pixel positions inside the 
pasted image). 

 
2 different methods of compositing the pictures 

Composition method 1 
allows scaling and rotation 

of the photographs:

 
Composition method 2 allows 
arbitrary scaling, rotation, and 

linear warping of the 
photographs to fill an arbitrary 

quadrilateral:

 
 

With two choices each for the camera, terrain, and image composition models, we 
have 8 possible systems to consider.  Under which of those 8 systems can the 
overlapped pictures always be made to agree exactly within their regions of 
overlap?  Explain your reasoning and justify your answers. 
 
 

You want perfect overlay 
of the two photographs in 
the region where they 
overlap in the mosaic. 

 



Problem 5 Projective Geometry 
Exercise 13.6 from Computer Vision: A Modern Approach (Forsyth and Ponce) 

 
Problem 6 State Space Observability 

Consider the following linear state space model: 
ttt xDx =+1     t

T
tt xMy =

Here, the measurement yt is a one-dimensional scalar for each t, and xt is a k-dimensional 
vector.  We say that this model is observable is the state can be reconstructed from any 
sequence of k measurements. 

a) Show that the model is observable if and only if the following matrix has full 
rank: 
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b) Consider a point drifting in 3D ( 3IDt = ), with a periodically varying observation 

matrix:  , [ ]TkM 1003 = [ ]TkM 013 01 =+ , [ ]TkM 00123 =+ .  Show that 
the model is observable. 

c) Show that a point moving with constant velocity in an arbitrary number of 
dimensions, with the observation matrix reporting position only, is observable. 

d) Show that a point moving with constant acceleration in an arbitrary number of 
dimensions, with the observation matrix reporting position only, is observable. 

 
 


