Camera calibration & radiometry

e Reading:
— Chapter 2, and section 5.4, Forsyth & Ponce
— Chapter 10, Horn

* Optional reading:
— Chapter 4, Forsyth & Ponce
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Camera calibration

* Geometric: how positions 1n the 1mage
relate to 3-d positions in the world.



Calibration target

The Opt1-CAL Calibration Target Iimage

http://www.Kinetic.bc.ca/CompVision/opti-CAL.html



From last lecture: camera calibration

pixel coordinates

world coordinates
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Camera calibration
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Camera calibration
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We want to solve for the unit vector m (the stacked one)
that minimizes ‘ me

The eigenvector corresponding to the minimum eigenvalue of
the matrix PP gives us that (see Forsyth&Ponce, 3.1).



What makes a valid M matrix?

A projection matrix can be written explicitly as a function of its five intrinsic parameters (o,
B, ug, vp, and @) and its six extrinsic ones (the three angles defining R and the three coordinates

of £), namely,
ar] —acotfrf +ugrl at, —acott, + uot.
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where r{ ,r1, and r} denote the three rows of the matrix R and ,, t,, and ¢, are the coordinates of

the vectort.
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o M=(A b)=|al b

( ) “ defined only up to a scale;
%)
normalize M so that ‘Ziﬂ = ‘@T‘ =1.

e M is a perspective projection matrix iff Det(A) # 0



Camera calibration

* Photometric: how the intensities in the
image relate surface and lighting properties
in the world.



light

[rradiance, E C{

surface

* Light power per unit area (watts per square
meter) incident on a surface.



light

Radiance, L

surface

* Amount of light radiated from a surface into
a given solid angle per unit area (watts per
square meter per steradian).

 Note: the area is the foreshortened area, as seen from the
direction that the light 1s being emitted.



Horn, 1986 @

Figure 10-7. The bidirectional reflectance distribution function is the ratio of
the radiance of the surface patch as viewed from the direction (fe,@e) to the
irradiance resulting from illumination from the direction (6;, ¢;).

L(O,.9.)

BRDF:f(€i9¢ia e’¢e):

E(0,9,)



How does the world give us the
brightness we observe at a point?

The total irradiance of radiance per
the surface is: solid angle

l Tl

Ey= [ | E(6.4)sin(6,)cos(8) d0, dg

f

Accounting for the
foreshortened area of
center patch relative to
1lluminant. l

The total radiance reflected
from the surface patch 1is:

T wl2

L©O.8)= [ [ /(0.0.6..4) E©,.4)sin(6,) cos(6,) db, d¢

-7 0



What you’d like to pull out from L

Pixel intensities may be proportional to
radiance reflected from the surface patch:

T wl2

L©O.4)= [ [ /(0.6.6..4) E©,.4)sin(6,) cos(6,) d6, ¢,

-7 0

(96 , ¢e surface orientation relative to camera

f(6.,9.,6,,0,) surface BRDF
Yo} (@i , ¢Z) illumination conditions
0., surface orientation relative to illumination

That’s hard, so let’s focus on special cases for the rest of this lecture.



Special case BRDF: Lambertian
reflectance

BRDF is a constant. These surfaces look equally
bright from all viewing directions.

F(08,.0,.0,) =

T

Radiance reflected from Lambertian surface

illuminated by point source:
/2

LO.4)= [ [ - 8(0,-0)5~4)sin(®) cos(6,) d6, d

-7 0

oc cos(6,)



Reflectance map

» For orthographic projection, and light sources at
infinity, the reflectance map 1s a useful tool for
describing the relationship of surface orientation
to 1mage intensity.

« Describes the image intensity for a given surface
orientation.

« Parameterize surface orientation by the partial
derivatives p and q of surface height z.



Relate surface normal to p &

Local tangent plane: 1\|&—X\: P
px+qy—z=k X

Unit normal to surface:
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Refl map for point source (in
direction s) Lambertian surface

For a Lambertian surface,

R(p,q)cn-s=cos(b,)

7 I+p,p+44
\/l—l—p2+q2\/1—|—pf—l—q§

Unit vector to source:
(-p, —q, 1)
J1+p +q,

T

S =




Picture of Lambertian refl map
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Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,a@) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.

Horn, 1986
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What constraints are there for
form of reflectance map?



shiney

diffuse light
sources

viewing hole

Freeman, 1994



inferred

image assumed reflectance
9 shape map
pix,v),
I‘K;YI' ql(x,y) O
¥ V4 °
I{p,q)
b4 X o

How to construct a feasible solution to the uncalibrated shape from shading problem,

Freeman, 1994



(a) image (b) assumed shape

(¢) inferred reflectance map (d) re-rendered image

Figure 3: (a) Image. (b) Assumed shape which created the image, (a). (c¢) Reflectance map
which, when applied to the shape (b), yields the image (a). Note that because the assumed
shape has a nearly sphereical shape, the inferred reflectance map is a distorted replia of the

nal image. (d) Interpolated reflectance map. (e) Numerical rendering of shape (b) with

Freeman, 19§glgelcta.nce map (d).
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shape 1 shape 2

blurred random noise
reflectance maps

Freeman, 1994 Figure 6: Showing that blurred reflectance maps lead to shapes which are easier to interpret.



Freeman, 1994 N random E]la-pfﬁ

simple pq map

Figure Li 3 range images (successively blurred versions of the same range image) are rendered
L with different pq reflectance maps. 1-3 are successively blurred versions of the same original
randem neoise pq map, A Lambertian (linear-shading approximation valid) reflectance function
and its rendered lmages are shown for comparison. Shapes are scaled up so that the range of
slopes fits the pg reflectance map. 2



ranco sh.ap es

Freeman, 1994

smlp].e pq map shapes rendered using simple pq map

Figure 2: Same as Fig, 1. with still mere blurring of the original random noise shape,




random shapes

Freeman, 1994 C

randonl pq maps

simple pq map

Figure 3: 3 range lmages (successively blurred versions of the same range image) are rendere
with different pq reflectance maps, 1= are successively blurred versions of the same origin
random neise pg map. A Lambertian (linear-shading approximation valid) reflectance functic
aud its readered images are shown for comparison, Shapes are scaled up so that the raage
slopes fits the pq reflectance map, k!
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shapes rendered us

shapes rendered using sinple pq map

Figure 4 Same as Fig, 3, with still mere blurring of the original random neise shape,

simple pq map

W | 4
y | g



Let’s list the things this model
doesn’t handle properly

Occluding edges

Albedo changes
Perspective effects (small)
Interreflections

Material changes across surfaces 1n the
1mage



Linear shading map

AN

Figure 10-14. In the case of the material in the maria of the moon, the re-
flectance map can be closely approximated by a function of a linear combination
of the components of the gradient. The contours of constant brightness are par-
allel straight lines in gradient space.

Horn, 1986




Linear shading: 1%t order terms
of Lambertian shading

Lambertian point source

1+ p,p+4q.q

R(p,q)=k

15t order Taylor

series about OR(p,
series out k., + R (P-4)
op

p=0,9=0

=k,(1+ p,p+4q,9)

See Pentland, IJCYV vol. 1 no. 4, 1990.

p+

\/1+p2+q2\/1+pf+q3

OR(p,q)

oq

p=0,g=0



Linear shading

—_
S
range image Lambertian shading
—_
S—
linear shading quadratic terms higher-order terms

Pentland 1990, Adelson&Freeman, 1991



Advantages of linear shading

Linear relationship between surface range map
and rendered 1mage.

Rendering 1s easy: differentiate with respect to
azimuthal light source direction.

Applies: linear sources, or shallow 1llumination
angles and Lambertian surface.

Allows for very simple inverse transformation
from rendered 1image to surface range map, which
we’ll discuss later with shape-from-shading
material.



Knowing the reflectance map, can
we infer the gradient at any point?



Horn, 1986

Generic reflectance map
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Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,a@) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.



Photometric stereo

ﬁ jQ‘: L
?Qx:

P

Horn, 1986 d

Fixed camera and object positions.
Take two or more images under different lighting conditions.



frame 11

frame 2
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Approach 1

notograph the object with a calibration
vject 1n the picture, or available 1n another

notograph.

Use the multiple responses of the
calibration object to the different light
sources to form a look-up table.

Index 1nto that table using the multiple
responses of the unknown object.

Handles arbitrary BRDF.



Approach 2

* Assume a particular functional form for the
BRDF (Lambertian). Assume known light
source positions (point sources at infinity as
specified locations).

* Analytically determine the surface slope for
each location’s collection of 1image
intensities.



Photometric stereo

Wi

N\

Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection
of the corresponding contours in two superimposed reflectance maps.

See Forsyth&Ponce sect. 5.4 for procedure. In HW: don’t
need to integrate the surface normals to get the shape.




From the image under the i™" lighting
condition (Lambertian)

Pixel intensity at position x,y surface radiance

in it" image. /

Ii(xay) — kLi(xay)
= kp(x, y))N(x,y)- S,

T A
surface albedo T
surface normal

ith light source direction



Combining all the measurements

/[1(36»)’)\ /ST\

L,(x, r :
2();6 |52 e ) Ne, )




Solve for g(x,y). May be 1ll-conditioned

fll(xay)\ /S\(T\
]Z(Xny) SzT

g(x,y)




A fix to avoid problems in dark areas: pre-
multiply both sides by the i1mage intensities

(]l(xay) O O \(]l(xay)\
0 L(xy - 0 1,(x,y)
: : : 0 :
. 0 0 0 1,0, )\, (x,))
(1,(x,y) 0 0 Vng\
0 L(x,y) - 0 ST
=l . - . 7 lg(x,p)
: : : 0 :




Recovering albedo and
surface normal

p(x,y)=g(x,)

% - g(xa y)
M) = g(x, )




Surface shape from surface gradients

e Can you do 1t?
* What are the ambiguities?
* What are the constraints?

 Method of Weiss, to be discussed 1n linear
filtering section.

* So for your homework, we’ll leave the
computation at the gradients.
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