6.801/866

Multi-view geometry

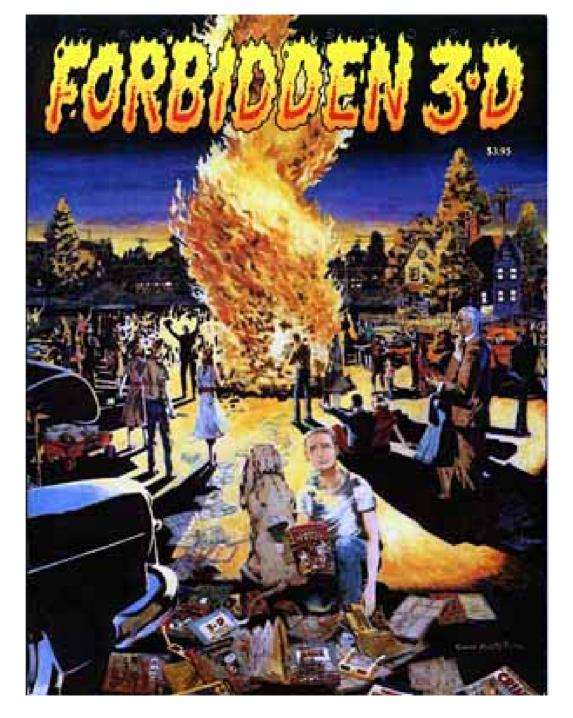
T. Darrell

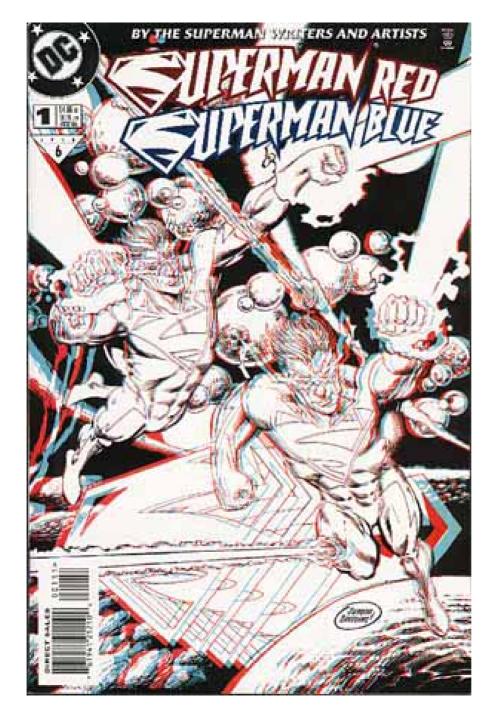
Multi-view geometry and 3-D

We have 2 eyes, yet we see 3-D!

Using multiple views allows inference of hidden dimension.

3-D: The hidden dimension...





Multiple views to the rescue!

How to see in 3-D

(Using geometry...)

- Find features
- Triangulate & reconstruct depth

Correspondence

Given a point in one image, find the point in a second image of the same 3-D location.

One of the hardest vision problems!

Next lecture: Algorithms for (quickly) estimating best correspondences.

Now: Where do we search? What are the constraints between images of 3-D points in multiple views?

Outline

- Multi-view geometry
- Epipolar constraint
- Essential matrix
- Fundamental matrix
- Trifocal tensor

Relate

• 3-D points

Relate

- 3-D points
- Camera centers

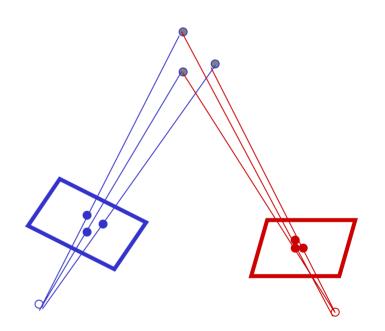
0

0

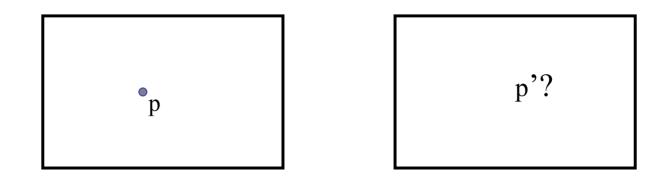
- 3-D points
- Camera centers
- Camera orientation

- 3-D points
- Camera centers
- Camera orientation
- Camera intrinsics

- 3-D points
- Camera centers
- Camera orientation
- Camera intrinsics



Stereo constraints

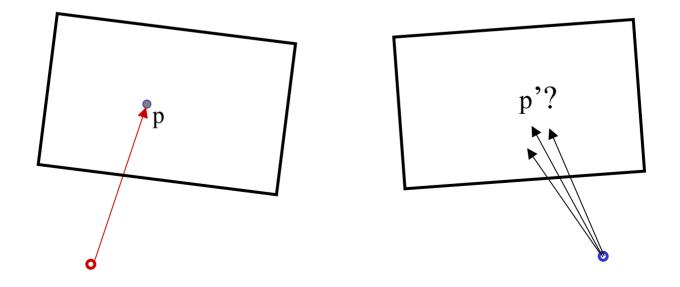


Given p in left image, where can corresponding point p' be?

Could be anywhere! Might not be same scene! ... Assume pair of pinhole views of static scene:

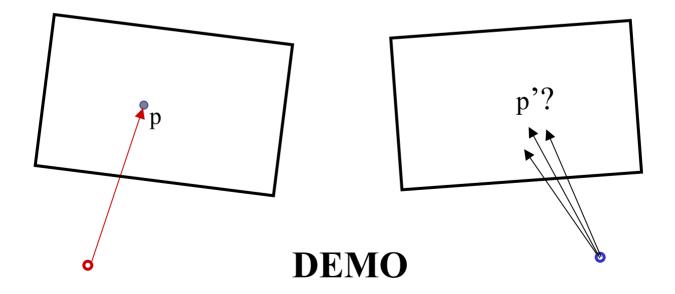
Stereo constraints

Given p in left image, where can p' be?

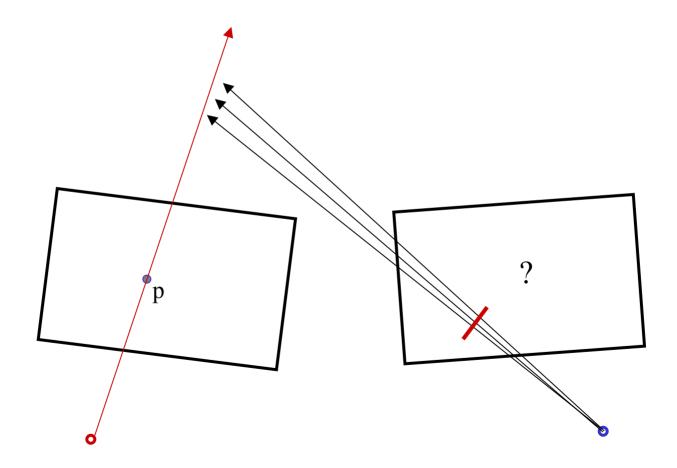


Stereo constraints

Given p in left image, where can p' be?



Epipolar line



Epipolar constraint

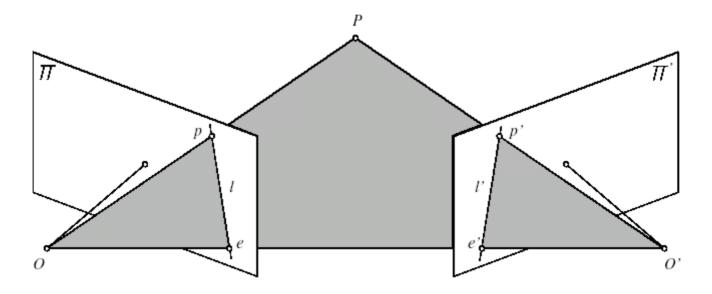


FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

All epipolar lines contain epipole, the image of other camera center.

From geometry to algebra...

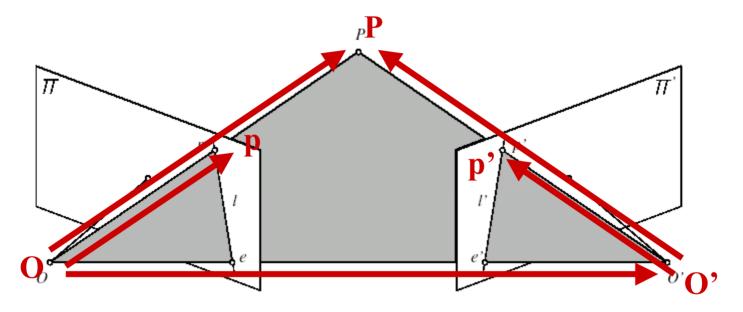
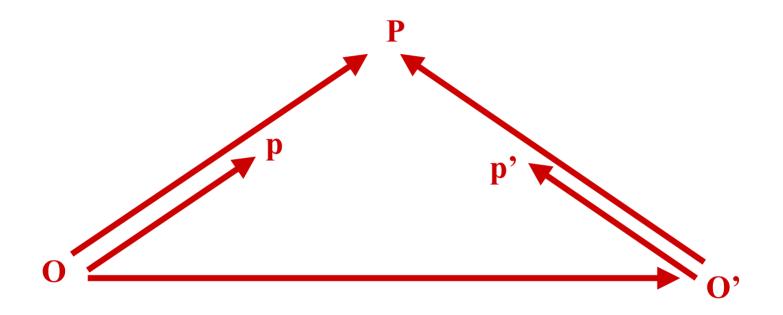


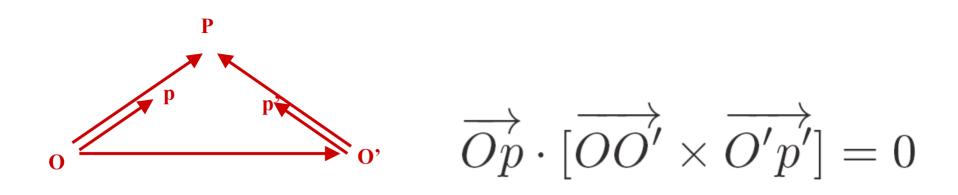
FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

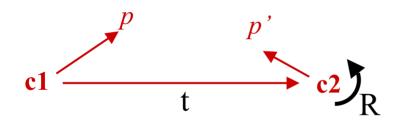
From geometry to algebra...



The epipolar constraint: these vectors are coplanar:

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$$





p,p' are image coordinates of P in c1 and c2...

 $oldsymbol{p} \cdot [oldsymbol{t} imes (\mathcal{R}oldsymbol{p}')] = 0$

c2 is related to c1 by rotation R and translation t

Matrix form

$\boldsymbol{p}\cdot [\boldsymbol{t} imes (\mathcal{R} \boldsymbol{p}')] = 0$

Linear constraint, should be able to express as matrix equation...

Review: matrix form of cross-product

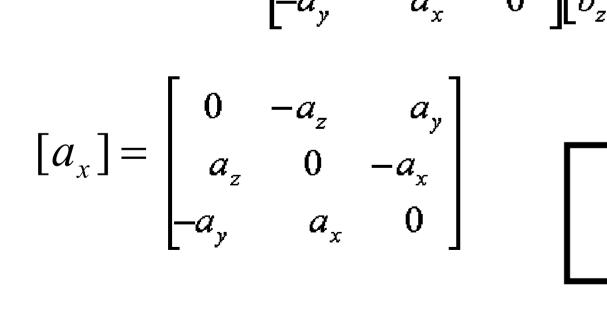
The vector cross product also acts on two vectors and returns a third vector. Geometrically, this new vector is constructed such that its projection onto either of the two input vectors is zero.

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{a} \cdot \vec{c} = 0$$

Review: matrix form of cross-product

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{b} \cdot \vec{c} = 0$$



$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

Matrix form

 $p \cdot [t \times (\mathcal{R}p')] = 0$

 $\vec{a} \times \vec{b} = [a_x]\vec{b}$

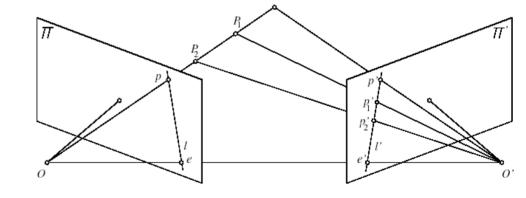
 $p^{T}[t_{x}]\Re p'=0$

 $\mathcal{E} = [t_r] \Re$

 $\boldsymbol{p}^T \boldsymbol{\mathcal{E}} \boldsymbol{p}' = 0$

The Essential Matrix

- Matrix that relates image of point in one camera to a second camera, given translation and rotation.
- 5 independent parameters (up to scale)
- Assumes intrinsic parameters are known.



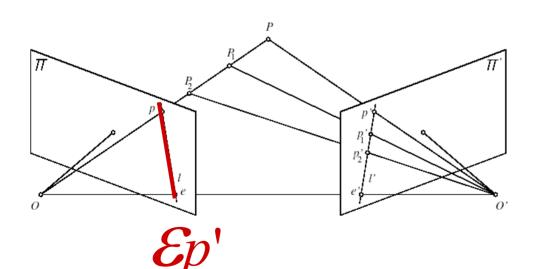
 $\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$

 $\mathcal{E} = [t_r] \Re$

 $\vec{a} \times \vec{b} = [a_r]\vec{b}$

The Essential Matrix

 $\mathcal{E}p'$ is the epipolar line corresponding to p' in the left camera. au + bv + c = 0



$$p = (u, v, 1)^{T}$$
$$l = (a, b, c)^{T}$$
$$l \cdot p = 0$$

 $\mathcal{E}p' \cdot p = 0$

 $\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$

Essential matrix in instantanous case

For small motion given translation and rotation velocity:

$$\begin{aligned} \boldsymbol{t} &= \delta t \, \boldsymbol{v}, \\ \mathcal{R} &= \mathrm{Id} + \delta t \left[\boldsymbol{\omega}_{\times} \right] \\ \boldsymbol{p}' &= \boldsymbol{p} + \delta t \, \dot{\boldsymbol{p}}. \end{aligned}$$

 $\boldsymbol{p}^{T}[\boldsymbol{v}_{\times}](\mathrm{Id} + \delta t [\boldsymbol{\omega}_{\times}])(\boldsymbol{p} + \delta t \dot{\boldsymbol{p}}) = 0$

FOE for translating camera

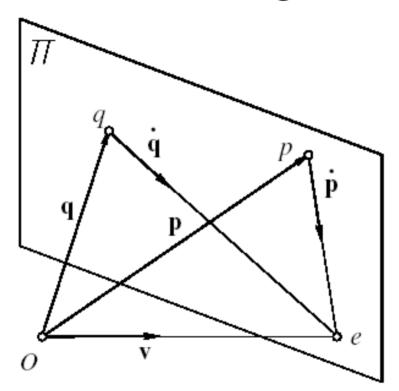
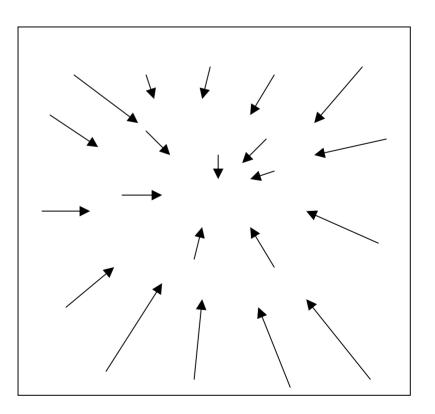


FIGURE 11.3: Focus of expansion: under pure translation, the motion field at every point in the image points toward the focus of expansion.

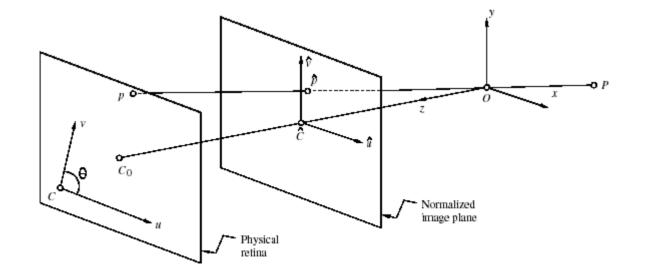
FOE for translating camera



What if calibration is unknown?

Recall calibration eqn:

$$oldsymbol{p} = \mathcal{K} \hat{oldsymbol{p}}, \hspace{0.2cm} ext{where} \hspace{0.2cm} oldsymbol{p} = egin{pmatrix} u \ v \ 1 \end{pmatrix} \hspace{0.2cm} ext{and} \hspace{0.2cm} \mathcal{K} \stackrel{ ext{def}}{=} egin{pmatrix} lpha & -lpha \cot heta & u_0 \ 0 & rac{eta}{\sin heta} & v_0 \ 0 & rac{\sin heta}{\sin heta} & v_0 \ 0 & 0 & 1 \end{pmatrix}.$$



Fundamental matrix

Essential matrix for points on normalized image plane,

$$\hat{p}^T \mathcal{E} \hat{p}' = 0$$

assume unknown calibration matrix:

$$p = K\hat{p}$$

 $\mathcal{F} = \mathcal{K}^{-T} \mathcal{E} \mathcal{K}'^{-1}$

yields:

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

Estimating the Fundamental Matrix

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u,v,1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$$

Estimating the Fundamental Matrix

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u, v, 1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \Leftrightarrow (uu', uv', u, vu', vv', v, u', v', 1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = 0$$

Estimating the Fundamental Matrix

How many correspondences are needed to estimate \mathcal{F} ?

 \mathcal{E} has 5 independent parameters up to scale.

In principle F has 7 independent parameters up to scale, and can be estimated from 7 point correspondences.Direct, simpler method uses 8 correspondences....

The 8 point algorithm

8 corresponding points, 8 equations.

$\left(u_{1}u_{1}^{\prime}\right)$	u_1v_1'	u_1	$v_1u'_1$	v_1v_1'	v_1	u'_1	v_1'	$\langle F_{11} \rangle$		(1)
			$v_2u'_2$				v'_2	$ F_{12} $	= -	1
$u_3u'_3$	$u_3v'_3$	u_3	$v_3u'_3$	v_3v_3'	v_3	u'_3	v'_3	F_{13}		1
$u_4u'_4$	$u_4v'_4$	u_4	$v_4 u'_4$	$v_4v'_4$	v_4	u'_4	v'_4	F_{21}		1
$u_5u'_5$	$u_5v'_5$	u_5	$v_5u'_5$	$v_5v'_5$	v_5	u'_5	v'_5	F_{22}		1
u_6u_6'	$u_6v'_6$	u_6						F_{23}		1
	u_7v_7'			v_7v_7'				F_{31}		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
$\langle u_8 u'_8 \rangle$	$u_8v'_8$	u_8	$v_8 u'_8$	$v_8v'_8$	v_8	u'_8	v'_8	$\langle F_{32} \rangle$		(1)

Invert and solve for \mathcal{F} .

(Use more points if available; find least-squares solution to minimize $\sum_{i=1}^{n} (p_i^T \mathcal{F} p_i')^2$)

i=1

The 8 point algorithm

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

is $\mathcal{F}(\text{or } \mathcal{E})$ full rank?

No...singular with rank=2. Has zero eigenvalue corresponding to epipole.

$$\mathcal{F}^T e = 0$$

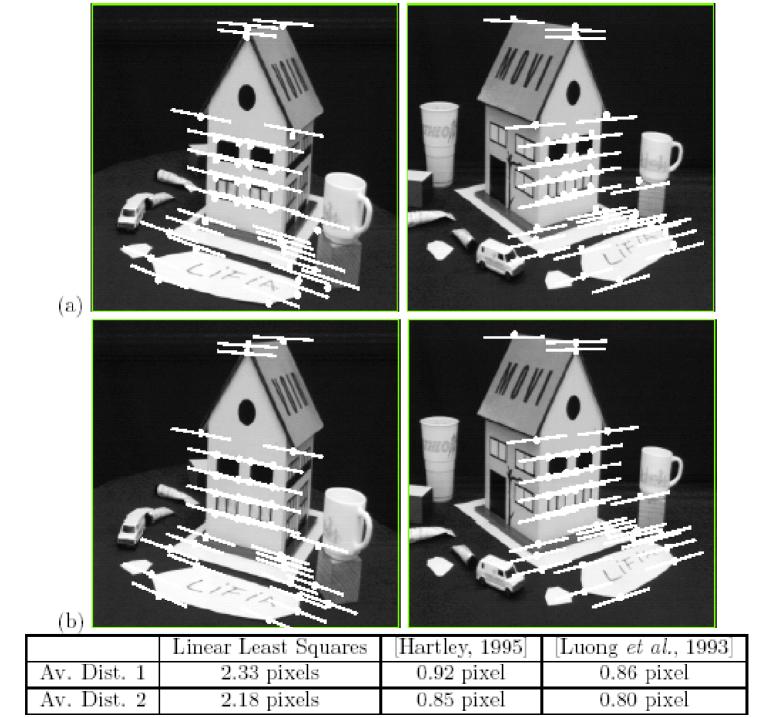
(Note that \mathcal{E} has two equal singlar values [Huang and Faugeras 1989])

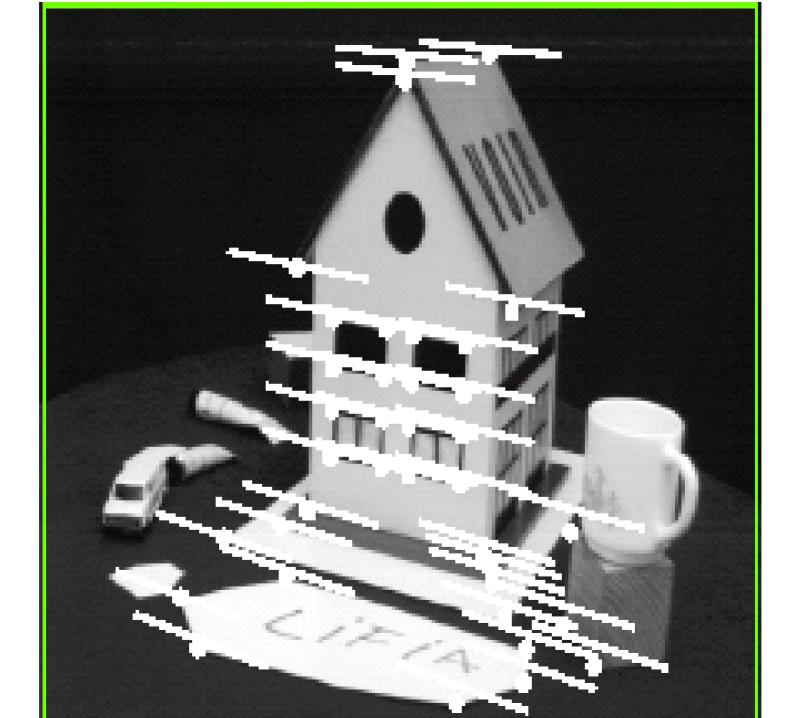
Improved 8 point algorithm

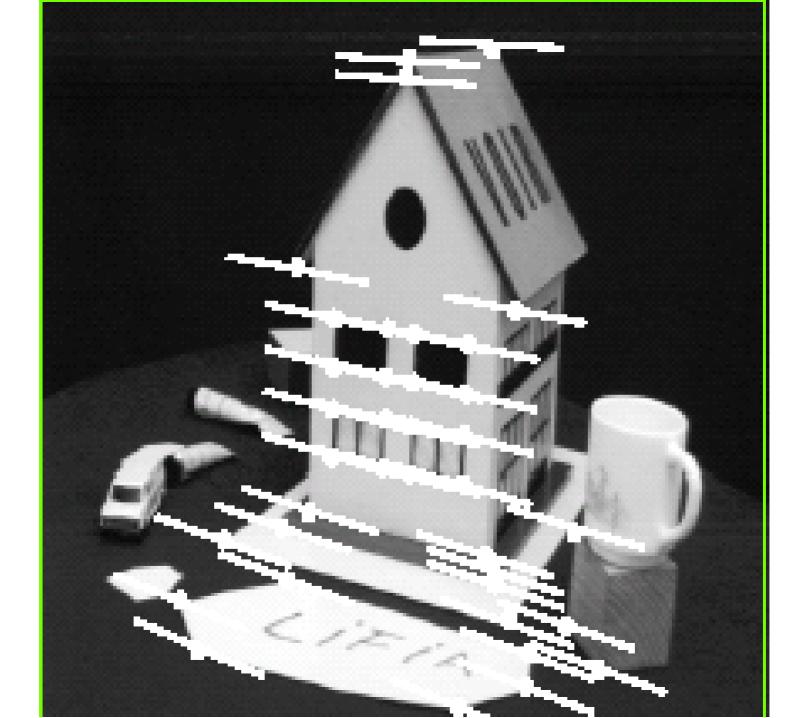
Enforce rank 2 constraint! *(Also pay attention to numerical conditioning...)*

Hartley 1995: use SVD.

- 1. Transform to centered and scaled coordinates
- 2. Form least-squares estimate of F
- 3. Set smallest singular value to zero.

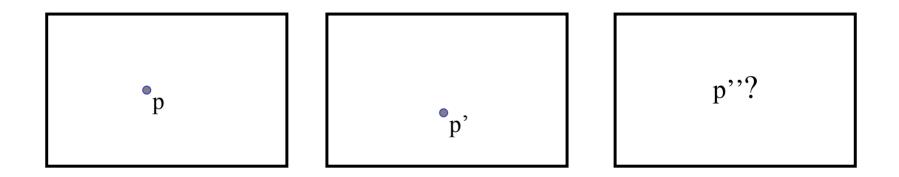






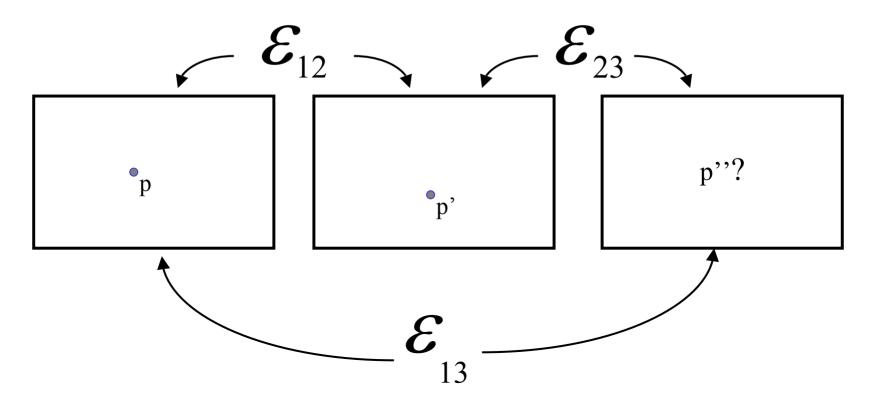
Stereo constraints

Given p',p'' in left and middle image, where is p'' in a third view?



Three essential matrices

Essential matrices relate each pair: (calibrated case)

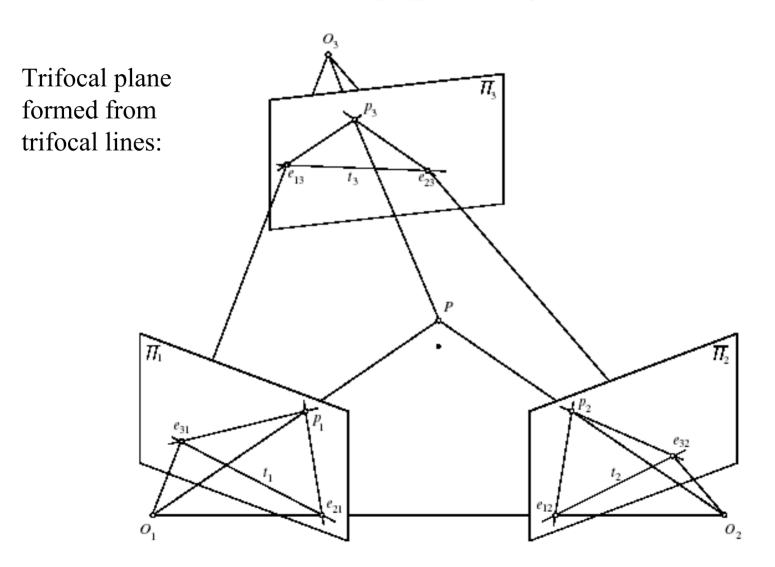


Three essential matrices

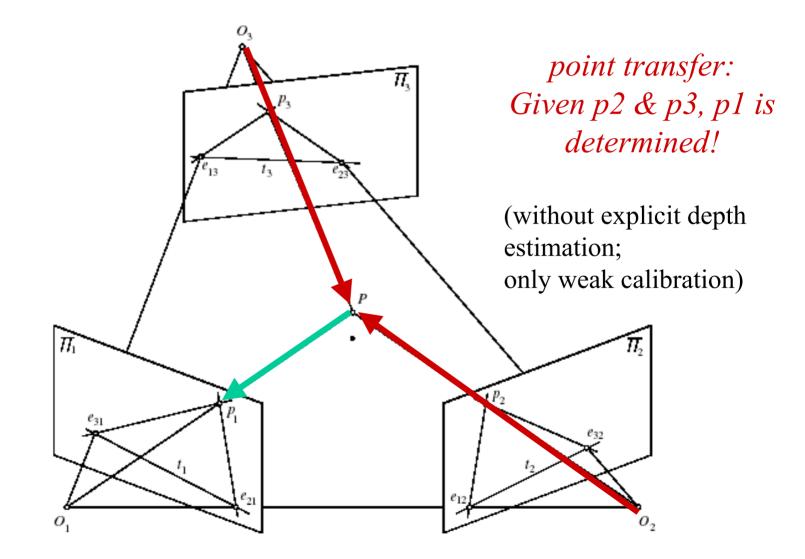
$$\left\{ egin{array}{ll} oldsymbol{p}_1^T \mathcal{E}_{12} oldsymbol{p}_2 = 0, \ oldsymbol{p}_2^T \mathcal{E}_{23} oldsymbol{p}_3 = 0, \ oldsymbol{p}_3^T \mathcal{E}_{31} oldsymbol{p}_1 = 0, \end{array}
ight.$$

any two are independent! can predict third point from two others.

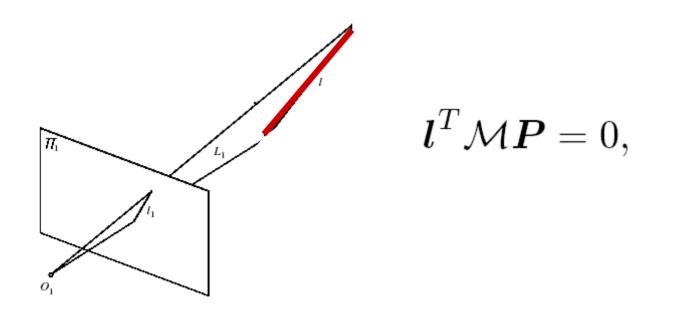
Trinocular epipolar geometry



Trinocular epipolar geometry



Form the plane containing a line l and optical center of one camera:



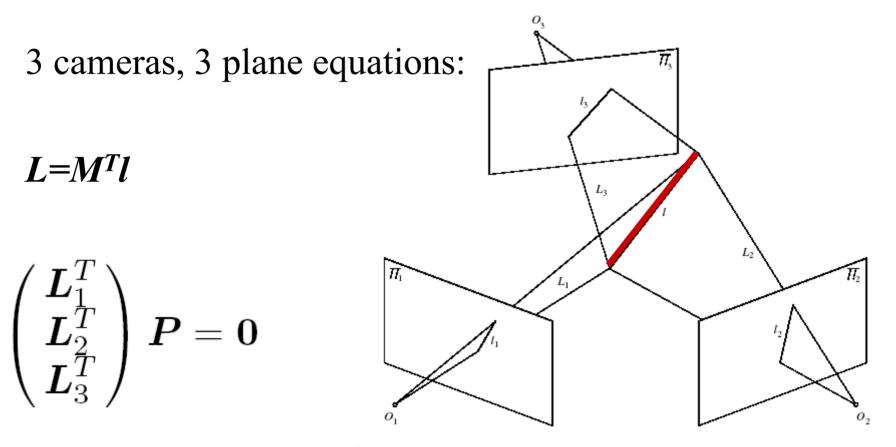


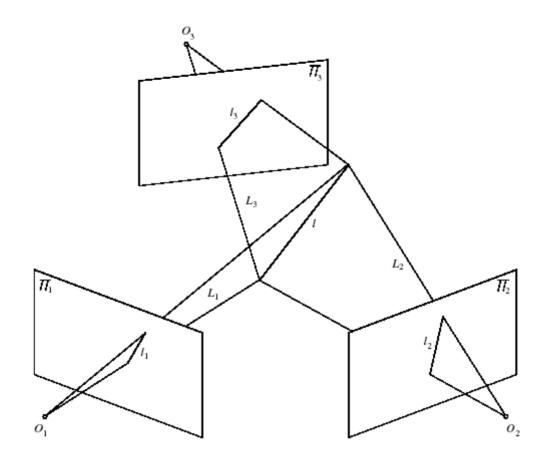
Figure 12.6. Three images of a line define it as the intersection of three planes in t same pencil.

$$\boldsymbol{l}^T \mathcal{M} \boldsymbol{P} = 0,$$

 $L = M^T l$

$$egin{pmatrix} oldsymbol{L}_1^T\ oldsymbol{L}_2^T\ oldsymbol{L}_3^T \end{pmatrix} oldsymbol{P} = oldsymbol{0} \ oldsymbol{\mathcal{L}} \stackrel{\mathrm{def}}{=} egin{pmatrix} oldsymbol{l}_1^T \mathcal{M}_1\ oldsymbol{l}_2^T \mathcal{M}_2\ oldsymbol{l}_3^T \mathcal{M}_3 \end{pmatrix}$$

If 3 lines intersect in more than one point (a line) this system is degenerate and is rank 2.



Rank of
$$\mathcal{L} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{l}_1^T \mathcal{M}_1 \\ \boldsymbol{l}_2^T \mathcal{M}_2 \\ \boldsymbol{l}_3^T \mathcal{M}_3 \end{pmatrix} = 2$$

Assume calibrated camera coordinates

$$\mathcal{M}_1 = (\operatorname{Id} \quad \mathbf{0})$$

 $\mathcal{M}_2 = (\mathcal{R}_2 \quad \boldsymbol{t}_2)$
 $\mathcal{M}_3 = (\mathcal{R}_3 \quad \boldsymbol{t}_3)$

then

$$\mathcal{L} = egin{pmatrix} oldsymbol{l}_1^T & oldsymbol{0} \ oldsymbol{l}_2^T \mathcal{R}_2 & oldsymbol{l}_2^T oldsymbol{t}_2 \ oldsymbol{l}_3^T \mathcal{R}_3 & oldsymbol{l}_3^T oldsymbol{t}_3 \end{pmatrix}$$

$$\mathcal{L} = egin{pmatrix} oldsymbol{l}_1^T & oldsymbol{0} \ oldsymbol{l}_2^T \mathcal{R}_2 & oldsymbol{l}_2^T oldsymbol{t}_2 \ oldsymbol{l}_3^T \mathcal{R}_3 & oldsymbol{l}_3^T oldsymbol{t}_3 \end{pmatrix}$$

Rank $\mathcal{L} = 2$ means det. of 3x3 minors are zero, and can be expressed as:

$$oldsymbol{l}_1 imes egin{pmatrix} oldsymbol{l}_2^T \mathcal{G}_1^1 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^2 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ \end{pmatrix} = oldsymbol{0},$$

with

$$\mathcal{G}_1^i = oldsymbol{t}_2 oldsymbol{R}_3^{iT} - oldsymbol{R}_2^i oldsymbol{t}_3^T$$

The trifocal tensor

These 3 3x3 matrices are called the trifocal tensor.

$$\mathcal{G}_1^i = \boldsymbol{t}_2 \boldsymbol{R}_3^{iT} - \boldsymbol{R}_2^i \boldsymbol{t}_3^T$$

the constraint

$$oldsymbol{l}_1 imes egin{pmatrix} oldsymbol{l}_2^T \mathcal{G}_1^1 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^2 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2 \$$

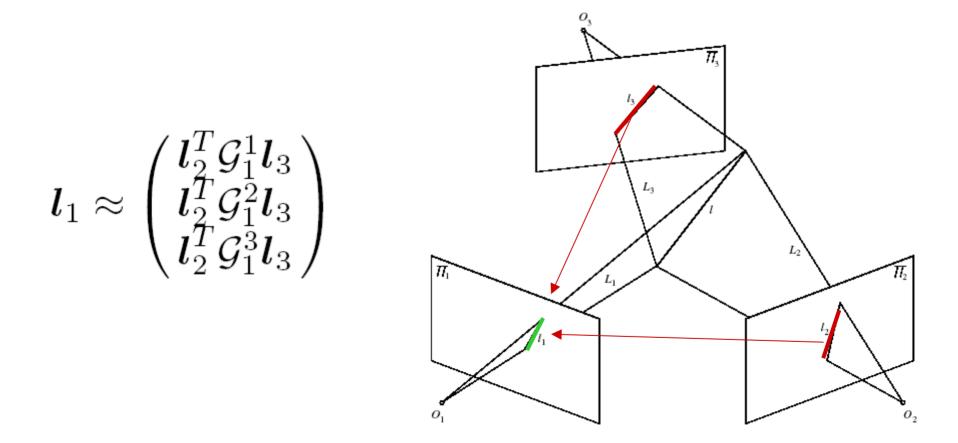
can be used for point or line transfer.

line transfer:

$$\boldsymbol{l}_1 \approx \begin{pmatrix} \boldsymbol{l}_2^T \mathcal{G}_1^1 \boldsymbol{l}_3 \\ \boldsymbol{l}_2^T \mathcal{G}_1^2 \boldsymbol{l}_3 \\ \boldsymbol{l}_2^T \mathcal{G}_1^3 \boldsymbol{l}_3 \end{pmatrix}$$

point transfer via lines: form independent pairs of lines through p2,p3, solve for p1.

Line transfer



Uncalibrated case $\mathcal{L} = \begin{pmatrix} \boldsymbol{l}_1^T \mathcal{K}_1 & \boldsymbol{0} \\ \boldsymbol{l}_2^T \mathcal{K}_2 \mathcal{R}_2 & \boldsymbol{l}_2^T \mathcal{K}_2 \boldsymbol{t}_2 \\ \boldsymbol{l}_3^T \mathcal{K}_3 \mathcal{R}_3 & \boldsymbol{l}_3^T \mathcal{K}_3 \boldsymbol{t}_3 \end{pmatrix}$

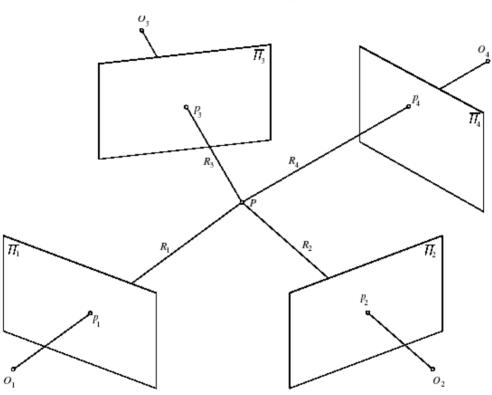
$$\mathcal{A}_i \stackrel{\mathrm{def}}{=} \mathcal{K}_i \mathcal{R}_i \mathcal{K}_1^{-1} \qquad \quad \boldsymbol{a}_i \stackrel{\mathrm{def}}{=} \mathcal{K}_i \boldsymbol{t}_i$$

 $\mathcal{M}_1 = (\mathcal{K}_1 \quad \mathbf{0}), \ \mathcal{M}_2 = (\mathcal{A}_2 \mathcal{K}_1 \quad \boldsymbol{a}_2),$

$$\mathcal{M}_3 = (oldsymbol{\mathcal{A}}_3 \mathcal{K}_1 \quad oldsymbol{a}_3)$$

$$\operatorname{Rank}(\mathcal{L}) = 2 \iff \operatorname{Rank}(\mathcal{L}\begin{pmatrix} \mathcal{K}_1^{-1} & 0\\ 0 & 1 \end{pmatrix}) = \operatorname{Rank}\begin{pmatrix} \boldsymbol{l}_1^T & 0\\ \boldsymbol{l}_2^T \mathcal{A}_2 & \boldsymbol{l}_2^T \boldsymbol{a}_2\\ \boldsymbol{l}_3^T \mathcal{A}_3 & \boldsymbol{l}_3^T \boldsymbol{a}_3 \end{pmatrix} = 2$$

Quadrifocal geometry



Can form a "quadrifocal tensor"

Faugeras and Mourrain (1995) have shown that it is algebraically dependent on associated essential/fundamental matricies and trifocal tensor: no new constraints added.

No additional independent constraints from more than 3 views.

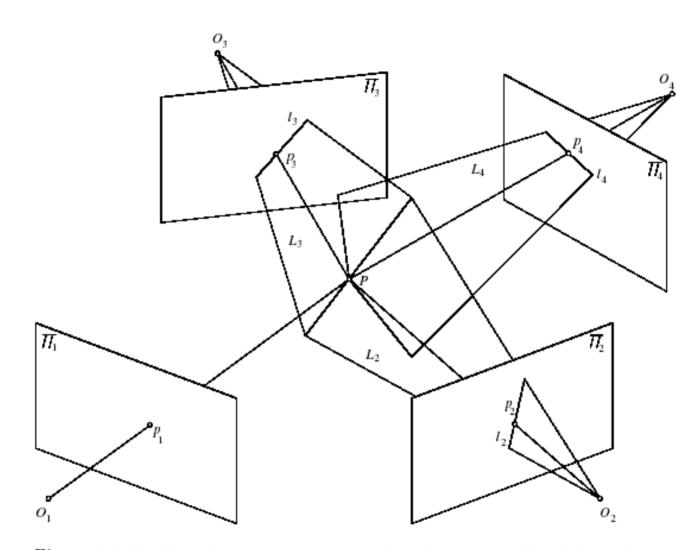


Figure 12.10. Given four images p_1 , p_2 , p_3 and p_4 of some point P and three arbitrary image lines l_2 , l_3 and l_4 passing through the points p_2 , p_3 and p_4 , the ray passing through O_1 and p_1 must also pass through the point where the three planes L_2 , L_3 and L_4 formed by the preimages of these lines intersect.

Trifocal constraint with noise

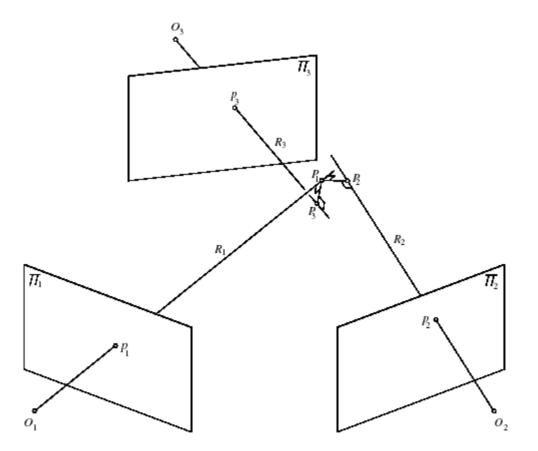


Figure 12.11. Trinocular constraints in the presence of calibration or measurement errors: the rays R_1 , R_2 and R_3 may not intersect.

Multi-view geometry and 3-D

We have 2 eyes, yet we see 3-D!

Using multiple views allows inference of hidden dimension.

Geometric and algebraic constraints

... can you see 3-D without multiple views?

Outline

- Multi-view geometry
- Epipolar constraint
- Essential matrix
- Fundamental matrix
- Trifocal tensor

Next: how do we find those correspondences?

[Most figures adapted from Forsythe and Ponce]