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Color

• Reading:  
– Chapter 6, Forsyth & Ponce

• Optional reading:
– Chapter 4 of Wandell, Foundations of Vision,

Sinauer, 1995 has a good treatment of this.

Oct. 1, 2002
MIT 6.801/6.866
Profs. Freeman and Darrell
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Shape-from-shading

• Reading:  
– Chapter 11 (esp. 11.1, 11.7), Horn

Oct. 1, 2002
MIT 6.801/6.866
Profs. Freeman and Darrell
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linear filters 
(Thursday & next Tuesday)

• Reading:  
– Chapter 7, F&P

• Recommended Reading:  
– Chapter 7, 8 Horn

Oct. 1, 2002
MIT 6.801/6.866
Profs. Freeman and Darrell



4

Color matching experiment

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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Color matching functions for a particular 
set of monochromatic primaries

p1 = 645.2 nm
p2 = 525.3 nm
p3 = 444.4 nm

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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Using the color matching functions to predict 
the primary match for a new spectral signal
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CIE XYZ: Color matching functions are positive everywhere, but primaries 
are imaginary.  Usually draw x, y, where x=X/(X+Y+Z)

y=Y/(X+Y+Z)

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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Color metamerism 

Two spectra, t and s, perceptually match when

where C are the color matching functions for 
some set of primaries.
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Metameric lights

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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Metamerism applications

The word “VOID” wasn’t visible on 
the check, when viewed by eye, only 
after xerox copying did it appear.
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Color appearance 

• Or, color matching outside of the controlled 
experimental setup.
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Spatial effects on color appearance
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Forsyth & Ponce
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Forsyth & Ponce
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demos

lightness
color
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Outline

• Color physics.
• Color perception and color matching.
• Inference about the world from color 

observations.
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What does a color reaching your eye tell 
you about the world?

=.*

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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General strategies

• (a) Determine what image 
would look like under 
white light, or (b) surface 
reflectances

• Assume 
– that we are dealing with flat 

frontal surfaces
– We’ve identified and 

removed specularities
– no variation in illumination

• We need some form of 
reference
– brightest patch is white
– spatial average is 

known
– gamut is known
– specularities
– prior probabilities for 

lights and surfaces

Forsyth & Ponce
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Low-dimensional models for color spectra
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Basis functions for Macbeth color checker

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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Low-dimensional models for color spectra

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
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The rendering model 
(using linear combinations of spectral basis functions to 

represent both surfaces and lights)
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Count unknowns and equations

• Suppose you use a 3-dimensional linear 
model for both the illuminant and surfaces 
(two different linear models of the same 
dimensionality).  Suppose have N surfaces.

• 3 + 3N unknowns
• 3N measurements
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A possible assumption:  know the 
mean surface value
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Average over all the N surfaces:
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In general, A will be invertible and the estimated illuminant, e, under 
the “gray world” assumption, is:
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Shape from shading
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Horn, 1986
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Generic reflectance map

Horn, 1986
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Remember, this model doesn’t 
handle properly:

• Occluding edges
• Albedo changes
• Perspective effects (small)
• Interreflections
• Material changes across surfaces in the 

image
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Freeman, 1994
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Freeman, 1994
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Linear shading map

Horn, 1986
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Linear shading:  1st order terms 
of Lambertian shading
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See Pentland, IJCV vol. 1 no. 4, 1990.
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Linear shading approximation

range image Lambertian shading

quadratic terms higher-order termslinear shading

Pentland 1990, Adelson&Freeman, 1991 
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Simplified lighting assumption

• For simplicity, and without loss of 
generality, let’s consider light source from 
the left.

• Then rendered image is proportional to the 
derivative of the range image along a row
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Simplified linear shape from shading 
computation, for I(n) = S(n+1)-S(N)

• Image, one row:  
I(n) =[17  14  12  4  4  9  25 …]

• Shape, same row:  
S(n) =[0    17   31  43  47  51  60  85…]

or       S(n) =[-17   0   14  26  30  34  41  66…]
or    etc.
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Illustrates a general problem

• Each row can have a different constant of 
integration.

• Typical of shape-from-shading problems:  
extra knowledge has to be put in, or extra 
assumptions have to be made:
– Boundary conditions
– Regularization terms
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Shape-from-shading as 
prototypical vision computation

Want to estimate scene parameters (surface slopes p and q at 
every image position, i, j).

Have a rendering function that takes you from some given 
set of scene parameters to observation data (reflectance 
map R(p,q) gives image intensity for any p, q).

Want to find the parameters (pi,j, qi,j) that minimize the 
difference from the observations (Ei,j).

But the problem is “ill-posed”, or underspecified from that 
constraint alone.  So add-in additional requirements that 
the scene parameters must satisfy (the surface slopes p 
and q must be smooth at every point).
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Shape-from-shading as 
prototypical vision computation
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Shape-from-shading as 
prototypical vision computation
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This approach is used in many different vision problems.  See poggio 
nature paper, horn work, szeliski paper, etc.  Relation to Bayesian 
methods will be discussed later.
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Look for stationary points
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Set derivatives = 0
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local max of function to be optimized, e:
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Set derivatives = 0
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• Show fig. 11-10, 11-11.

Horn, 1986

Results using this 
approach
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