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Homeworks

• Problem set 1 returned today.  Mean: 85.  Std dev: 15
• Problem set 1 solutions posted (with password 

protection) by Tuesday
• Note revisions to problem set 2 matlab assignment

– To clarify the problems and make them work out cleaner for 
you.

– Modifying an existing solution to the revised version will be 
very simple.
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Shape from shading
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A shape-from-shading algorithm
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• Show fig. 11-10, 11-11.

Horn, 1986

Results using this 
approach
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2-d animation

Copyrighted … yada yada yada
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3-d animation
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Image filtering 

• Reading:  
– Chapter 7, F&P

• Recommended Reading:  
– Chapter 7, 8 Horn

Oct. 3, 2002
MIT 6.801/6.866
Profs. Freeman and Darrell
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Take 6.341, discrete-time signal 
processing

• If you want to process pixels, you need to 
understand signal processing well, so 
– Take 6.341

• Fantastic set of teachers:
– Al Oppenheim 
– Greg Wornell
– Jae Lim

• Web page:  http://web.mit.edu/6.341/www/
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What is image filtering?

• Modify the pixels in an image based on 
some function of a local neighborhood of 
the pixels.

5 14
1 71

5 310

Local image data

7

Modified image data

Some function
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Linear functions
• Simplest:  linear filtering.

– Replace each pixel by a linear combination of 
its neighbors.

• The prescription for the linear combination 
is called the “convolution kernel”.

5 14
1 71

5 310

0.5
0.5 00
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0 00

Local image data kernel

7

Modified image data
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Convolution
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Linear filtering (warm-up slide)
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Linear filtering (warm-up slide)
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Linear filtering

0
Pixel offset

co
ef

fic
ie

nt

1.0

?
original



16

shift
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Linear filtering
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Blurring
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original Blurred (filter
applied in both 
dimensions).
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Blur examples
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Blur examples
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Linear filtering (warm-up slide)
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0 0
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Linear filtering (no change)
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0 0

Filtered
(no change)
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Linear filtering
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(remember blurring)
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applied in both 
dimensions).
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Sharpening 

2.0

original
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0

Sharpened 
original
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Sharpening example
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(differences are
accentuated;  constant

areas are left untouched).
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Sharpening

before after
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Oriented filters
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Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric 
(or odd) filters, bottom row the
symmetric (or even) filters.



30

Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

=
transformed image

Vectorized image
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Self-inverting transforms
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U transpose and complex conjugate
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An example of such a transform:  
the Fourier transform

discrete domain
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To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. 
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Here u and v 
are larger than 
in the previous 
slide.
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And larger still...
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Phase and Magnitude
• Fourier transform of a real 

function is complex
– difficult to plot, visualize
– instead, we can think of the 

phase and magnitude of the 
transform

• Phase is the phase of the 
complex transform

• Magnitude is the 
magnitude of the complex 
transform

• Curious fact
– all natural images have 

about the same magnitude 
transform

– hence, phase seems to 
matter, but magnitude 
largely doesn’t

• Demonstration
– Take two pictures, swap the 

phase transforms, compute 
the inverse - what does the 
result look like?
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This is the 
magnitude 
transform 
of the 
cheetah pic
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This is the 
phase 
transform 
of the 
cheetah pic
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This is the 
magnitude 
transform 
of the zebra
pic
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This is the 
phase 
transform 
of the zebra
pic
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Reconstruction 
with zebra 
phase, cheetah 
magnitude
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Reconstruction 
with cheetah 
phase, zebra 
magnitude
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Example image synthesis with 
fourier basis.

• 16 images
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Fourier transform magnitude
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Masking out the fundamental and 
harmonics from periodic pillars
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Name as many functions as you 
can that retain that same 

functional form in the transform 
domain
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Discrete-time, continuous frequency Fourier transform

Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999
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Discrete-time, continuous frequency Fourier transform pairs

Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999
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Bracewell’s pictorial dictionary of Fourier 
transform pairs

Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 
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Why is the Fourier domain 
particularly useful?

• It tells us the effect of linear convolutions.
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Fourier transform of convolution

Consider a (circular) convolution of g and h

hgf ⊗=
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hgf ⊗=
Fourier transform of convolution

Take DFT of both sides

( )hgDFTnmF ⊗=],[
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Write the DFT and convolution explicitly
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution
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Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters

0Pixel offset
co

ef
fic

ie
nt

original

0.3

blurred















+=

= ∑∑
−

=

−

=







 +−

M
m

elkfnmF
M

k

N

l

NM
kmi

π

π

cos21
3
1             

],[],[
1

0

1

0

ln

Low-pass 
filter

0

1.0



81

Analysis of our simple filters
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Sampling and aliasing
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Sampling in 1D takes a continuous function and replaces it with a 
vector of values, consisting of the function’s values at a set of 
sample points.  We’ll assume that these sample points are on a 
regular grid, and can place one at each integer for convenience.
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Sampling in 2D does the same thing, only in 2D.  We’ll assume that 
these sample points are on a regular grid, and can place one at each 
integer point for convenience.
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A continuous model for a 
sampled function

• We want to be able to 
approximate integrals 
sensibly

• Leads to
– the delta function
– model on right

Sample2D f (x,y)( )= f (x, y)δ (x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑

= f (x,y) δ (x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑
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The Fourier transform of a 
sampled signal

F Sample2D f (x,y)( )( )= F f (x, y) δ(x − i,y − j)
i=−∞
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Aliasing

• Can’t shrink an image by taking every second 
pixel

• If we do, characteristic errors appear 
– In the next few slides
– Typically, small phenomena look bigger; fast 

phenomena can look slower
– Common phenomenon

• Wagon wheels rolling the wrong way in movies
• Checkerboards misrepresented in ray tracing
• Striped shirts look funny on colour television
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Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.
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Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer
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Smoothing as low-pass filtering

• A filter whose FT is a 
box is bad, because the 
filter kernel has 
infinite support

• Common solution: use 
a Gaussian
– multiplying FT by 

Gaussian is equivalent 
to convolving image 
with Gaussian.

• The message of the FT is 
that high frequencies lead 
to trouble with sampling.

• Solution: suppress high 
frequencies before 
sampling
– multiply the FT of the 

signal with something 
that suppresses high 
frequencies

– or convolve with a low-pass 
filter
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Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.
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Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.
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Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.
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Thought problem
Analyze 

crossed 
gratings
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What is a good representation for 
image analysis?

• Fourier transform domain tells you “what” 
(textural properties), but not “where”.

• Pixel domain representation tells you 
“where” (pixel location), but not “what”.

• Want an image representation that gives 
you a local description of image events—
what is happening where.
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Image pyramids
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The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is 
redundant
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The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled 

Gaussian pyramid level and Gaussian pyramid 
level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer
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Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a particular 

scale and orientation
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE
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