6.801/6.866 Machine Vision

Syllabus
# Date Description Readings Assignments Materials
| Freeman Slides
1 9/5 |Course Introduction Pset #0 (not collected) | Darrell Shdes
Matlab Tutorial Diary
Feq: FP 1 :
2 9/10 |Cameras, Lenses, and Sensors Opt: H2.1,2.3 Freeman Slides
3| 9/12 |Radiometry and Shading Models T g;‘gf ;II: 43 S4HI0 Ipoet 4 Assigned | Freeman Slides
4 9/17 |Radiometry and Shading Models I " Freeman Slides
5 9/19 | Multiview Geometry Req: FP 10 Darrell Slides
6 9/24 |Stereo Req:FP11; H13 Pset #1 Due Darrell Slides
7 9/26 |Color Req: FP 6.1-6.4 Pset #2 Assigned Freeman Slides
] . Req: H11.1, 11.5-11.9 .
& 10/1 |Shape from Shading Opt: H11.2-11.4 Freeman Slides
_— Req: FP 7 . —_—
9 10/3 |Image Filtering Opt: H7,8 Freeman Slides
10 10/8 Image Representations Handouts (2) ‘Pset #2 Due
11 10/10 |Texture Req: FP 9 Exam #1 Assigned
10/15 | Columbus Day (NO LECTURE)
12 10/17 |Bayesian Analysis and Optic Flow Req:H12
13 10/22 |Direct SFM Req: H17 Exam #1 Due
14 10/24 | Affine Reconstruction Req: FP 12 ‘Pset #3 Assigned




Today: non-linear filters, and
uses for the filters and
representations from last time

* Review pyramid representations
* Non-linear filtering

e Textures



Reading

« Related to today’s lecture:
— Chapter 9, Forsyth&Ponce..

* For next Thursday’s lecture:
— Horn, Ch. 12
— Bishop chapter 1 (handout from last lecture)



Mid-term exam

Problem set 3 given out today
— Open book, open web.

— Work by yourself. This problem set 1s a mid-term
exam, and you can’t: talk about it, e-mail about it,
give hints, etc, with others.

— Due Tuesday, Oct. 22 (in 12 days).



Image representations

 Fourier basis

e Image pyramids



Image pyramids
W \ //// S\ Progressively blurred and
/ \ S subfampled z]fersions of the

I\ %\ “  1mage. Adds scale invariance
x to fixed-size algorithms.

 (Gausslian

Shows the information added in
Gaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

« Laplacian

Bandpassed representation, complete, but with
* Wavelet/ QMF . aliasiflg and soI;ne non-oriented fubbands.
Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis.

» Steerable pyrami



Wavelet/QMF representation




Linear image transformations

* In analyzing 1images, 1t’s often useful to
make a change of basis.

transformed 1mage

}_;: — U_) <+— Vectorized 1image
A

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform



Schematic pictures of each
matrix transform

e Shown for 1-d images

* The matrices for 2-d 1images are the same
1dea, but more complicated, to account for
vertical, as well as horizontal, neighbor

relationships.




Fourier transtorm

Fourier
transform

K
Fourier bases pixel domain
are global: Image
each transform
coefficient

depends on all
pixel locations. 10



Gaussiqg — pixel image
pyrami —

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur.



Laplacian
pyramid

U~ Laplacian pyramid

pixel image

Sk

Overcomplete representation.
Transformed pixels represent

. . . 12
bandpassed image information.



Wavelet
pyramid

Ortho-normal
transform (like

Fourier transform),

but with localized
basis functions.

" Wavelet (QMF) transform

pixel image

13



.

Steerable
pyramid

3 Steerable pyramid

I
-

Multiple
orientations at
one scale

Multiple
orientations at
the next scale

the next scale...

;

N

pixel image

Over-complete
representation,

but non-aliased
subbands.
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Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html
—lcv—

Laboratory for Computational Vision

“Home | People | Research Pubictions| Software

Publicly Available Software Packages

« Texture Analysis/Synthesis - Matlab code is available for analyzing and
synthesizing visual textures. README | Contents | Changelog | Source
code (UNIX/PC, gzip'ed tar file)

« EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

_> « matlabPyrTools - Matlab source code for multi-scale image processing.
Includes tools for building and manipulating Laplacian pyramids,
QOMFMavelets, and steerable pyramids. Data structures are compatible with
the Matlab wavelet toolbox, but the convolution code (in C) is faster and has
many boundary-handling options. README, Contents, Modification list,
UNIX/PC source or Macintosh source.

_> « The Steerable Pyramid, an {(approximately) translation- and rotation-invariant
multi-scale image decomposition. MatLab (see above) and C
implementations are available.

» Computational Models of cortical heurons. Macintosh program available.

« EPIC - Efficient Pyramid (Wavelet) Image Coder. C source code available.

« OBVIUS [Object-Based Vision & Image Understanding System]:
README / Changelog / Doc (225k) / Source Code (2.25M).

» CL-SHELL [Gnu Emacs <-> Common Lisp Interface]:
README / Change Log / Source Code {119k).

15



Why use these representations?

Handle real-world size variations with a
constant-size vision algorithm.

Remove noise
Analyze texture
Recognize objects

Label image features

16



Image statistics (or, mathematically,
how can you tell image from noise?)




Bayesian MAP estimator for clean bandpass

coefficient values
Let x = bandpassed 1mage value before adding noise.
Let y = noise-corrupted observation.
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Bayesian MAP estimator

Let x = bandpassed 1mage value before adding noise.
Let y = noise-corrupted observation.

4
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By Bayes theorem :
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Bayesian MAP estimator

Let x = bandpassed 1mage value before adding noise.
Let y = noise-corrupted observation.

v 10°

gl

By Bayes theorem

B

P(x]y) = k P(y[x) P(x) o
P(x)
P(y|x) il

P(x]y)

I:I ] ] ] ]
-260 200 -150 100 -50 O all 100 150 200 250



Noise removal results

(a) (b)

(d)

Figure 4: Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian
white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored 21

using (semi-blind) Bayesian estimator (SNR = 13.82dB). gimoncelli and Adelson, Noise Removal via
http://www-bcs.mit.edu/people/adelson/pub pdfs/simoncelli noise.pdf Bayesian Wavelet Coring




Image texture

22



Texture

« Key issue: representing texture

— Texture based matching

o little 1s known
— Texture segmentation

 key issue: representing texture
— Texture synthesis

« useful; also gives some insight into quality of representation

— Shape from texture

* cover superficially

23



The Goal of Texture Synthesis

input zmage

o e SYNtIESIS

True (inﬁnit) texture  generated image

Given a finite sample of some texture, the goal 1s

to synthesize other samples from that same texture
— The sample needs to be "large enough*

24



The Goal of Texture Analysis

mput zmage

AN ALYSIH “Same” or

“different”

T r(inﬁnit) texture  generated image

Compare textures and decide if they’re made of the
same “‘stuff”.

25



Pre-attentive texture discrimination
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Pre-attentive texture discrimination
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Pre-attentive texture discrimination

Same or different textures?

28



Pre-attentive texture discrimination
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Pre-attentive texture discrimination
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Pre-attentive texture discrimination

Same or different textures?
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Julesz

e Textons: analyze the texture in terms of
statistical relationships between
fundamental texture elements, called
“textons”.

* [t generally required a human to look at the
texture 1n order to decide what those
fundamental units were...

32



Influential paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson*#*

= SEI David Sarmoll Eesearch Center. Princeton,
New Jersey 08540, USA

=% Media Lab and Department of Brain and Cognitive Science,

Massachusetts Institute of Technology, Cambridge,
Massachusets 02139, USA
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Learn: use filters.

Bergen and Adelson, Nature 1988

Fig. 1 Top row, Textures
consisting of Xs within a
texture composed of Ls.
The micropatterns are
placed at random orienta-
tions on a randomly per-
turbed lattice. a, The bars
of the Xs have the same
length as the bars of the
Ls. b, The bars of the Ls
have been lengthened by
25%. and the intensity
adjusted  for the same
mean  luminance.  Dis-
criminability is enhanced.
c, The bars of the Ls
have been shortened by
25%. and the intensity
adjusted for the same
mean  luminance.  Dis-
criminabitity is impaired.
Bottom row: the responses
of a size-tuned mechan-
ism d, response o image
a; e, response o image b
f: response o image c.

e B I S 7S T e S

S I S O i |
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Learn: use lots of filters, multi-ori&scale.

Malik and Perona

) e

W I) =~

Malik J, Perona P. Preattentive texture
discrimination with early vision

mechanisms. J OPT SOC AM A 7: (5) 923-

932 MAY 1990 35




Representing textures

* Textures are made up of . What filters?
quite stylised subelements,

. . — experience suggests spots
repeated in meaningful P ggests sp

and oriented bars at a

ways variety of different scales
* Representation: — details probably don’t
— find the subelements, and matter
represent their statistics e What statistics?
 But what are the — within reason, the more the
subelements, and how do METTIET.
we find them? — At least, mean and standard
- deviation
— recall normalized . N
correlation — better, various conditional
histograms.

— find subelements by
applying filters, looking at
the magnitude of the 36
response






. O Squared responses  Spatially blurred

vertical filter

Threshold squared,
blurred responses,
then categorize

. texture based on
horizontal filter those two bits

38
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Pyramid-Based Texture Analysis/Synthesis

David J. Heeger" James R. Bergen!
Stanford University SRI David Sarnoff Research Center

. Ny
—I—

°
) ) SIGGRAPH 1994

° >e. -
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Learn: use filter marginal statistics.

Bergen and Heeger

=

Right) Cuiput synihelic texiure

Figure 2: (Lelt) Input digitized sample lexiure: burled mappa wood. (Middle) Input noise. {

that matches the appearance of the digitized zample. Note that the synthesized texturz iz larger than the digitized sample;
our approach allows generation ol as much texiture as desired, In addition, the gvnihetc texiures e szamlessly,

43



Berge and Heeger results

Figure 3: In each pair left image is original and nght image is synthetic: stucco, iridescent ribbon, green marble, panda fur,

slag stone, figured yew wood.

44



Bergen and Heeger failures

Figure 9: More failures: hay and marble.




De Bonet (and Viola)

SIGGRAPH 1997

Multiresolution Sampling Procedure
for Analysis and Synthesis
of Texture Images
Jeremy S. De Bonet
Learning & Vision Group

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EMAIL: jsd@ai.mit.edu
HOMEPAGE: http://www.ai.mit.edu/__jsd

46



Fad” iwecrae ol

T

L

Learn: use filter conditional statistics across scale.

DeBonet

A B

peraesad

Figure 8: The distribution from which pixels in the synthesis pyra- Figure 9: An input texture is decomposed to form an analysis pyra-
mid are sampled 1s conditioned on the “parent”™ structure of tk_mse mid, from which a new synthesis pyramid is sampled, conditioned
pixels. Each element of the parent structure contains a vector of the on local features within the pyramids. A filter bank of local texture
feature measurements at that location and scale. measures. based on psychophysical models, are used as features.
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DeBonet

48



PPTOTETe: I O T T

i [ DeBonet
R OL s I S

! 35
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Portilla and Simoncelli

* Parametric representation.
e About 1000 numbers to describe a texture.
* Ok results; maybe as good as DeBonet.

50



Portilla and Simoncelli
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Zhu, Wu, & Mumford, 1998

* Principled approach.
* Synthesis quality not great, but ok.

52



Zhu, Wu, & Mumford

'-"'"'., i:

* Cheetah Synthetic
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IEEE Internaticnal Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt } @cs.berkeley.edu

X
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fros and Leung
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ILIE

Figure 2. Results: given a sample image (left), the algorithm synthesized four new images with nel'?'l'lburhtmd windows of
width 5, 11, 15, and 23 pixels respectively. Notice how perceptually intuitively the window size corresponds to the degree of
randomness in the resulting textures. Input images are: (a) synthetic rings, (b) Brodatz texture D11, (c¢) brick wall




What we learned from Efros and
Leung regarding texture synthesis

Don’t need conditional filter responses
across scale

Don’t need marginal statistics of filter
responses.

Don’t need multi-scale, multi-orientation
filters.

Don’t need filters.

57



C The algOm]Efros & Leung °99

— Very simple
— Surprisingly good results
— Synthesis 1s easier than analysis!

— ...but very slow
* Optimizations and Improvements
— [We1 & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]

58



Efros & Leung ’99 extended

non-parametric
sampling

Input image

Synthesizing a block

* QObservation: neighbor pixels are highly correlated

Idea: unit of synthesis = block

e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale! 59



Image Quilting
* Idea:

— let’s combine random block placement of Chaos
Mosaic with spatial constraints of Efros & Leung

« Related Work (concurrent):
— Real-time patch-based sampling [Liang et.al. *01]
— Image Analogies [Hertzmann et.al. *01]

60



block

Input texture

B1 | B2 B1| |B2 B1| | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error bounda

overlapping blocks vertical boundary

- B
B

overlap error min. error boundary




Our Philosophy

* The “Corrupt Professor’s Algorithm™:
— Plagiarize as much of the source image as you can

— Then try to cover up the evidence

 Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together

63



Algorithm

— Pick size of block and size of overlap

— Synthesize blocks 1n raster order

— Search 1nput texture for block that satisfies overlap
constraints (above and left)

* Easy to optimize using NN search [Liang et.al., *01]
— Paste new block into resulting texture

* use dynamic programming to compute minimal error
boundary cut

64
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Failures
(Chernobyl
Harvest)




Texture Transter

e Take the texture from one
object and “paint” 1t onto
another object

— This requires separating texture
and shape

— That’s HARD, but we can cheat

— Assume we can capture shape by
boundary and rough shading

Then, just add another constraint when sampling:
similarity to underlying image at that spot
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Wei & Levoy
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Summary of image quilting

* Quilt together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
* Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad
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Median filter

Replace each pixel by the median over N
pixels (5 pixels, for these examples).
Generalizes to “rank order” filters.

In: ‘ Out: Splke
noise 1s
LELEVEEL T LEETETETTTTT removed
5-pixel
neighborhood
Monotonic
In: | Out: edges,
remain
il i

unchanged
83



Degraded image

84



Radius 1 median filter
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Radius 2 median filter
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CCD color sampling
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Color sensing, 3 approaches

* Scan 3 times (temporal multiplexing)

* Use 3 detectors (3-ccd camera, and color
film)

* Use offset color samples (spatial
multiplexing)
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Typical errors 1n temporal
multiplexing approach

* Color offset fringes

89



Typical errors 1n spatial
multiplexing approach.

* Color fringes.
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CCD color filter pattern

detector

91



The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.
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Black and white edge falling on
color CCD detector

Black and white image (edge) /

93



Color sampling artifact

Interpolated pixel colors,
for grey edge falling on colored
detectors (linear interpolation).
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Typical color moire patterns

Blow-up of

+  electronic camera
image. Notice spurious
colors in the regions

of fine detail in the
plants.
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Color sampling artifacts
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Human Photoreceptors

(A)

riicls

COmERS

(C)

3.4 THE SPATIAL MOSAIC OF THE HUMAN

CONES. Cross sections of the human retina at the

level of the inner segments showing (A) cones in

the fovea, and (B) cones in the periphery. Note the

size difference (scale bar = 10 ym), and that, as the

separation between cones grows, the rod receptors fill

in the spaces. (C) Cone density plotted as a function

of distance from the center of the fovea for seven

0.1 02 03 04 05  pyman retinas; cone density decreases with distance
Eccentricity (mm) from the fovea. Source: Curcio et al., 1990,

Cones/mm? (=1000)

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
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Median Filter Interpolation

Perform first interpolation on 1solated color
channels.

Compute color difference signals.
Median filter the color difference signal.

Reconstruct the 3-color image.
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Two-color sampling of BW edge

Sampled data

Linear interpolation
0001 |

Color difference signal ‘ ‘
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R-G, after linear interpolation
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R — G, median filtered (5x5)
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Recombining the median filtered colors

Linear interpolation Median filter interpolation
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Didn’t get a chance to show:

Local gain control.
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