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Today:  non-linear filters, and 
uses for the filters and 

representations from last time

• Review pyramid representations
• Non-linear filtering
• Textures
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Reading

• Related to today’s lecture: 
– Chapter 9, Forsyth&Ponce..

• For next Thursday’s lecture:
– Horn, Ch. 12
– Bishop chapter 1 (handout from last lecture)
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Mid-term exam

Problem set 3 given out today
– Open book, open web.
– Work by yourself.  This problem set is a mid-term 

exam, and you can’t: talk about it, e-mail about it, 
give hints, etc, with others.

– Due Tuesday, Oct. 22 (in 12 days).
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Image representations

• Fourier basis
• Image pyramids
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Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable pyramid
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Wavelet/QMF representation
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Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

=
transformed image

Vectorized image
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Schematic pictures of each 
matrix transform

• Shown for 1-d images
• The matrices for 2-d images are the same 

idea, but more complicated, to account for 
vertical, as well as horizontal, neighbor 
relationships.
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Fourier transform

= *

Fourier 
transform

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

pixel domain 
image
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Gaussian pyramid

=

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

*
Gaussian 
pyramid

pixel image
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Laplacian pyramid

=

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

*
Laplacian

pyramid
pixel image
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Wavelet (QMF) transform

Wavelet 
pyramid = *

Ortho-normal 
transform (like 
Fourier transform), 
but with localized 
basis functions.  

pixel image
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=
Multiple 

orientations at 
one scale  

Multiple 
orientations at 
the next scale  

the next scale…  

Steerable pyramid

*
Steerable
pyramid

pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 
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Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html
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Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
• Analyze texture
• Recognize objects
• Label image features
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Image statistics (or, mathematically, 
how can you tell image from noise?)
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P(x)

Bayesian MAP estimator for clean bandpass
coefficient values

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)P(x|y)
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P(x)

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)
P(x|y)

Bayesian MAP estimator
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P(x)

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)

P(x|y)

Bayesian MAP estimator
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Noise removal results

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring



22

Image texture
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Texture

• Key issue: representing texture
– Texture based matching

• little is known

– Texture segmentation
• key issue: representing texture

– Texture synthesis
• useful; also gives some insight into quality of representation

– Shape from texture
• cover superficially
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The Goal of Texture Synthesis

True (infinite) texture

SYNTHESIS

generated image

input image

• Given a finite sample of some texture, the goal is 
to synthesize other samples from that same texture
– The sample needs to be "large enough“
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The Goal of Texture Analysis

True (infinite) texture

ANALYSIS

generated image

input image

“Same” or 
“different”

Compare textures and decide if they’re made of the 
same “stuff”.
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Pre-attentive texture discrimination
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Pre-attentive texture discrimination



28

Pre-attentive texture discrimination

Same or different textures?
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Pre-attentive texture discrimination
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Pre-attentive texture discrimination
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Pre-attentive texture discrimination

Same or different textures?
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Julesz
• Textons:  analyze the texture in terms of 

statistical relationships between 
fundamental texture elements, called 
“textons”.  

• It generally required a human to look at the 
texture in order to decide what those 
fundamental units were...
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Influential paper:
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Learn:  use filters.

Bergen and Adelson, Nature 1988
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Malik and Perona
Learn:  use lots of filters, multi-ori&scale.

Malik J, Perona P. Preattentive texture 
discrimination with early vision 
mechanisms. J OPT SOC AM A 7: (5) 923-
932 MAY 1990 
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Representing textures

• Textures are made up of 
quite stylised subelements, 
repeated in meaningful 
ways

• Representation:
– find the subelements, and 

represent their statistics
• But what are the

subelements, and how do 
we find them?
– recall normalized 

correlation
– find subelements by 

applying filters, looking at 
the magnitude of the 
response

• What filters?
– experience suggests spots 

and oriented bars at a 
variety of different scales

– details probably don’t 
matter

• What statistics?
– within reason, the more the 

merrier.
– At least, mean and standard 

deviation
– better, various conditional 

histograms.
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image

Squared responses Spatially blurred

vertical filter

horizontal filter

Threshold squared, 
blurred responses, 
then categorize 
texture based on 
those two bits
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SIGGRAPH 1994
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Learn:  use filter marginal statistics.

Bergen and Heeger
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Bergen and Heeger results
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Bergen and Heeger failures
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De Bonet (and Viola)
SIGGRAPH 1997
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Learn:  use filter conditional statistics across scale.

DeBonet
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DeBonet
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DeBonet
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Portilla and Simoncelli
• Parametric representation.
• About 1000 numbers to describe a texture.
• Ok results;  maybe as good as DeBonet.
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Portilla and Simoncelli



52

Zhu, Wu, & Mumford, 1998

• Principled approach.
• Synthesis quality not great, but ok.
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Zhu, Wu, & Mumford

• Cheetah                    Synthetic
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Efros and Leung
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What we learned from Efros and 
Leung regarding texture synthesis

• Don’t need conditional filter responses 
across scale

• Don’t need marginal statistics of filter 
responses.

• Don’t need multi-scale, multi-orientation 
filters.

• Don’t need filters.
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Efros & Leung ’99
• The algorithm

– Very simple
– Surprisingly good results
– Synthesis is easier than analysis!
– …but very slow

• Optimizations and Improvements
– [Wei & Levoy,’00] (based on [Popat & Picard,’93]) 
– [Harrison,’01]
– [Ashikhmin,’01]
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Efros & Leung ’99 extended

pp

• Observation: neighbor pixels are highly correlated

Input image

non-parametric
sampling

BB

Idea:Idea: unit of synthesis = blockunit of synthesis = block
• Exactly the same but now we want P(B|N(B))

• Much faster: synthesize all pixels in a block at once

• Not the same as multi-scale!

Synthesizing a block
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Image Quilting
• Idea:

– let’s combine random block placement of Chaos 
Mosaic with spatial constraints of Efros & Leung

• Related Work (concurrent):
– Real-time patch-based sampling [Liang et.al. ’01]
– Image Analogies [Hertzmann et.al. ’01] 
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Input texture

block

B1 B2

Random placement 
of blocks 

B1 B2

Neighboring blocks
constrained by overlap

B1 B2

Minimal error
boundary cut
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Minimal error boundary
overlapping blocks vertical boundary

__ ==
22

overlap error min. error boundary
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Our Philosophy
• The “Corrupt Professor’s Algorithm”:

– Plagiarize as much of the source image as you can
– Then try to cover up the evidence

• Rationale:  
– Texture blocks are by definition correct samples of 

texture so problem only connecting them together
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Algorithm
– Pick size of block and size of overlap
– Synthesize blocks in raster order

– Search input texture for block that satisfies overlap 
constraints (above and left)

• Easy to optimize using NN search [Liang et.al., ’01]

– Paste new block into resulting texture
• use dynamic programming to compute minimal error 

boundary cut
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Failures
(Chernobyl

Harvest)
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Texture Transfer
• Take the texture from one 

object and “paint” it onto 
another object
– This requires separating texture 

and shape
– That’s HARD, but we can cheat 
– Assume we can capture shape by 

boundary and rough shading

•
Then, just add another constraint when sampling: Then, just add another constraint when sampling: 
similarity to underlying image at that spotsimilarity to underlying image at that spot
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parmesan
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Source
texture

Target 
image

Source
correspondence

image

Target
correspondence  
image
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Portilla & Simoncelli Xu, Guo & Shum

input image

Wei & Levoy Image Quilting



Portilla & Simoncelli Xu, Guo & Shum

input image

Wei & Levoy Image Quilting



Homage to 
Shannon!

Portilla & Simoncelli Xu, Guo & Shum

input image

Wei & Levoy Image Quilting
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Summary of image quilting
• Quilt together patches of input image 

– randomly (texture synthesis) 
– constrained (texture transfer)

• Image Quilting 
– No filters, no multi-scale, no one-pixel-at-a-time! 
– fast and very simple
– Results are not bad
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Median filter
Replace each pixel by the median over N 
pixels (5 pixels, for these examples).  
Generalizes to “rank order” filters.

Spike 
noise is 
removed

In: Out:

5-pixel 
neighborhood

Monotonic 
edges 
remain 
unchanged

In: Out:
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Degraded image



85

Radius 1 median filter



86

Radius 2 median filter
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CCD color sampling
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Color sensing, 3 approaches

• Scan 3 times (temporal multiplexing)
• Use 3 detectors (3-ccd camera, and color 

film)
• Use offset color samples (spatial 

multiplexing) 
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Typical errors in temporal 
multiplexing approach

• Color offset fringes
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Typical errors in spatial 
multiplexing approach.

• Color fringes.
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CCD color filter pattern

detector
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The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.
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Black and white edge falling on 
color CCD detector

Black and white image (edge)

Detector pixel colors
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Color sampling artifact

Interpolated pixel colors, 
for grey edge falling on colored
detectors (linear interpolation).
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Typical color moire patterns

Blow-up of 
electronic camera
image.  Notice spurious
colors in the regions
of fine detail in the 
plants.
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Color sampling artifacts
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Human Photoreceptors

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
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Brewster’s colors example (subtle).

Scale relative
to human
photoreceptor
size:  each line
covers about 7
photoreceptors.
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Median Filter Interpolation

• Perform first interpolation on isolated color 
channels.

• Compute color difference signals.
• Median filter the color difference signal.
• Reconstruct the 3-color image.
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Two-color sampling of BW edge

Sampled data

Linear interpolation

Color difference signal

Median filtered color difference signal
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R-G, after linear interpolation
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R – G, median filtered (5x5)
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Recombining the median filtered colors

Linear interpolation Median filter interpolation
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Didn’t get a chance to show:

Local gain control.
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