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Today

• Edges
• Bayes
• Motion analysis
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Mid-term exam

Problem set 3
– Open book, open web.
– Work by yourself.  But you can ask us questions for 

clarification.
– Due Tuesday, Oct. 22 (in 5 days).
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6.866 projects

• Proposals to us by Oct. 29 or earlier.
• We will ok them by Oct. 31
• 3 possible project types:

– Original implementation of an existing algorithm
– Rigorous evaluation of existing implementation.
– Synthesis or comparison of several research 

papers.
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6.866 projects, continued

• Some possible projects
– Study conditions on shape and reflectance maps such 

that shape is interpretable from rendered image.
– Pose and solve a problem:  make an algorithm that 

detects broken glass, or that finds trash.  Implement and 
evaluate it.

– Evaluate accuracy of photometric stereo shape 
reconstructions.

– Compare several motion estimation algorithms. Discuss 
how they’re different, the benefits of each, etc.  Put 
them in a common framework.
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Gradients and edges

• Points of sharp change 
in an image are 
interesting:
– change in reflectance
– change in object
– change in illumination
– noise

• Sometimes called 
edge points

• General strategy
– determine image 

gradient

– now mark points where 
gradient magnitude is 
particularly large wrt 
neighbours (ideally, 
curves of such points).

Forsyth, 2002
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There are three major issues:
1) The gradient magnitude at different scales is different; which should

we choose?
2) The gradient magnitude is large along thick trail; how

do we identify the significant points?
3) How do we link the relevant points up into curves?

Forsyth, 2002



9

Smoothing and Differentiation

• Issue:  noise
– smooth before differentiation
– two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of 

Gaussian filter
• because differentiation is convolution, and 

convolution is associative

Forsyth, 2002
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1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

Forsyth, 2002
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We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression).  These points should form a curve.  There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?

Forsyth, 2002
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Forsyth, 2002

Non-maximum
suppression

At q, we have a 
maximum if the 
value is larger 
than those at 
both p and at r. 
Interpolate to 
get these 
values.
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Forsyth, 2002

Predicting
the next
edge point

Assume the 
marked point is an 
edge point.  Then 
we construct the 
tangent to the edge 
curve (which is 
normal to the 
gradient at that 
point) and use this 
to predict the next 
points (here either 
r or s). 
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Remaining issues

• Check that maximum value of gradient 
value is sufficiently large
– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low 
threshold to continue them.
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along gradient maxima
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Notice

• Something nasty is happening at corners
• Scale affects contrast
• Edges aren’t bounding contours
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Forsyth, 2002
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fine scale
high 
threshold

Forsyth, 2002
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coarse 
scale,
high 
threshold

Forsyth, 2002
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coarse
scale
low
threshold

Forsyth, 2002



20

edges

• Issues:  
– On the one hand, what a useful thing:  a marker 

for where something interesting is happening in 
the image.

– On the other hand, isn’t it way to early to be 
thresholding, based on local, low-level pixel 
information alone?
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Something 
useful with 

edges

Dan Huttenlocher

http://www.cs.cornell
.edu/~dph/hausdorff/
hausdorff1.html
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Another useful, bandpass-filter-
based, non-linear operation: 

Contrast normalization
• Maintains more of the signal, but still does 

some gain control.
• Algorithm:  bp = bandpassed image.

absval = abs(bp);

avgAmplitude = upBlur(blurDn(absval, 2), 2);

contrastNorm = bp ./ (avgAmplitude + const);

amplitude

local contrast

Contrast 
normalized 

output
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Bandpass filtered 
(deriv of gaussian)

Original image
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Absolute value Blurred 
absolute value

Bandpass filtered



25Bandpass filtered and 
contrast normalized

Bandpass filtered
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Bandpass filtered and 
contrast normalized

Bandpass filtered
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Bayesian methods
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Simple, prototypical vision problem

• Observe some product of two numbers, say 1.0.
• What were those two numbers?
• Ie, 1 = ab.  Find a and b.

• Cf, simple prototypical graphics problem: here are 
two numbers;  what’s their product?
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1     2     3     4

4

3

2

1

hyperbola of feasible solutions

a

b
1 = a b
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Bayesian approach

• Want to calculate P(a, b | y = 1).
• Use P(a, b | y = 1) = k P(y=1|a, b) P(a, b).

Likelihood function

Prior probability

Posterior probability
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Likelihood function, P(obs|parms)

• The forward model, or rendering model, 
taking into account observation noise.

• Example:  assume Gaussian observation 
noise.  Then for this problem:
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Prior probability

• In this case, we’ll assume P(a,b)=P(a)P(b), 
and P(a) = P(b) = const., 0<a<4.
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Posterior probability

• Posterior = k likelihood  prior
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0 elsewhere
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Ab = 1 problem

D. H. Brainard and W. T. 
Freeman, Bayesian Color 
Constancy, Journal of the 
Optical Society of 
America, A, 14(7), pp. 
1393-1411, July, 1997
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Loss functions



36D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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Bayesian decision theory

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



39D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



41D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



43D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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Local mass loss function may be 
useful model for perceptual tasks

http://sportsillustrated.cnn.com/baseball/college/2000/college_world_series/news/2000/06/15/cws_notebook_ap/t1_borchard_ap_01.jpg



45D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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Regularization vs Bayesian 
interpretations

)()1( 222 baab ++− λRegularization:
minimize

Bayes: 
maximize
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Bayesian interpretation of 
regularization approach

• For this example:
– Assumes Gaussian random noise added before 

observation
– Assumes a particular prior probability on a, b.
– Uses MAP estimator (assumes delta fn loss).
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Why the difference matters

• Know what the things mean
• Speak with other modalities in language of 

probability
• Loss function
• Bayes also offers principled ways to choose 

between different models.
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Example image
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Multiple shape explanations

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.
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Generic shape interpretations render to 
the image over a range of light directions

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.
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Loss function

'')',',,()|','()|,( θθθθθ sdssslysPysL ∫=



57
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.
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Shape probabilities

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.
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Comparison of shape explanations

• Lighting 
“genericity” of 
the shape 
explanation:

0.48                  3.8                   
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