6.801/6.866 Machine Vision

Syllabus
‘ # ‘ Date ‘ Description ‘ Readings ‘ Assignments ‘ Materials
Req: FP 9 : :

‘ 11 [10/10 |Texture and Edges ‘ Opt: FP 8 Exam #1 Assigned | Freeman Slides

Columbus Day (NO
LO13 LECTURE)

12 1017 Bayesian Analysis and Optic Req: H 12
Flow

13 10/22 | Direct SFM Req: H17 Exam #1 Due

14 [10/24 | Affine Reconstruction Req: FP 12 Pset #3 Assigned




Today

* Edges
* Bayes
* Motion analysis



Mid-term exam

Problem set 3
— Open book, open web.

— Work by yourself. But you can ask us questions for
clarification.

— Due Tuesday, Oct. 22 (in 5 days).



6.866 projects

* Proposals to us by Oct. 29 or earlier.
 We will ok them by Oct. 31
3 possible project types:
— Original implementation of an existing algorithm

— Rigorous evaluation of existing implementation.

— Synthesis or comparison of several research
papers.



6.866 projects, continued

e Some possible projects

— Study conditions on shape and reflectance maps such
that shape is interpretable from rendered image.

— Pose and solve a problem: make an algorithm that
detects broken glass, or that finds trash. Implement and
evaluate it.

— Evaluate accuracy of photometric stereo shape
reconstructions.

— Compare several motion estimation algorithms. Discuss
how they’re different, the benefits of each, etc. Put
them 1n a common framework.
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6.801/6.866 Machine Vision

Date

Description

9/5

Course Introduction

9/10

Cameras, Lenses, and Sensors

9112

Radiometry and Shading Models I

9/17

Radiometry and Shading Models IT

9/19

Multiview Geometry

9/24

Stereo

9/26

Color

10/1

Shape from Shading

10/3

Image Filtering

10/8

Image Reprezentations

10/10

Texture and Edges

10/15

Columbus Day (NO LECTURE)

10/17

Bayesian Analysis and Optic Flow

1022

Direct SFM

10/24

Affine Reconstruction

10/29

TBD

Syllabus

16

10/31

Statistical Classifiers T

17

11/5

Statistical Classifiers TT

18

11/7

Projective Reconstruction

19

11112

Clustering & Segmentation

20

11/14

EM

21

11119

Hough Transforms, RANSAC,
& Voting Methods

22

11/21

Tracking & Density Propagation

23

11/26

Model-Bazed Vision

11/28

Thanksgiving (NO LECTURE)

24

12/3

Vizual Surveillance /
Activity Monitoring

25

12/5

Image Databases

26

12/10

Image-Based Rendering




Gradients and edges

e Points of sharp change < General strategy

In an 1mage are — determine image
interesting: gradient
— change 1n reflectance
— change in object — now mark points where
— change 1n 1llumination grad.lent magnitude is
: particularly large wrt
- HOBE neighbours (ideally,
e Sometimes called curves of such points).
edge points

Forsyth, 2002



There are three major issues:
1) The gradient magnitude at different scales 1s different; which should
we choose?
2) The gradient magnitude is large along thick trail; how
do we 1dentify the significant points?
3) How do we link the relevant points up into curves?

Forsyth, 2002



Smoothing and Differentiation

e Issue: noise
— smooth before differentiation
— two convolutions to smooth, then differentiate?

— actually, no - we can use a derivative of
Gaussian filter

* because differentiation 1s convolution, and
convolution 1s associative

Forsyth, 20



1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

10
Forsyth, 2002



We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?

11
Forsyth, 2002



& & & o @ Non-maximum
P suppression

At q, we have a

. . . maximum if the

q value 1s larger
. than those at
GI'ELdlﬁI]t both p and at r.
Interpolate to
get these

. . '::::' . . values.
T

Forsyth, 2002




Forsyth, 2002

&
(radient

Predicting
the next
edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
I Ors).




Remaining 1ssues

* Check that maximum value of gradient
value 1s sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

T

Pixel number in linked list

<— Labeled as edge —p along gradient maxima

=
)

(-
[\

Gradient magnitude




Notice

* Something nasty 1s happening at corners
* Scale affects contrast
* Edges aren’t bounding contours

15
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Forsyth, 2002



'+ coarse

R scale,
/~—— high
threshold
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Forsyth, 2002
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edges

e Issues:

— On the one hand, what a useful thing: a marker
for where something interesting 1s happening in
the 1mage.

— On the other hand, 1sn’t it way to early to be
thresholding, based on local, low-level pixel
information alone?

20



Something
useful with
edges

Dan Huttenlocher

http://www.cs.cornell
.edu/~dph/hausdorft/
hausdorffl.html

- 7
= r——j iz a two-dimensional bitmap that serves as a model view of an object (Kevin
gitting on a couch)

[l
K

“ Ill-r.ll‘l LS

E"’"” N
H H_ﬁwﬁf}
3

I/ is a two-dimensional bitmap (intensity
edges) in which we want to locate this model, under the transformation of two-dimensional
translation and scaling (that is the model iz allowed to move in x and y, and also to scale
separately in each of these dimensions, for a total of four transformation parameters).

i shows the best transformation (translation
and gcaling) of the model with respect to the image, in the sense that it maximizes the
fraction of model edge points that lie near image edge points (within 1 pixel diagonally).
The green points are image egdes, the red points are transformed model edges, and the
yvellow points are locations where both an image edge and a transformed model edge are
coincident. Note that there are many red locations adjacent to green ones (which would not
be detected by a method such ag binary correlation).



Another useful, bandpass-filter-
based, non-linear operation:
Contrast normalization

* Maintains more of the signal, but still does
some gain control.

* Algorithm: bp = bandpassed image.

amplitude — absval = abs(bp);
local contrast—s avgAmplitude = upBlur(blurDn(absval, 2), 2);

Contrast — contrastNorm = bp ./ (avgAmplitude + const);

normalized
output 22



#1. Range [0, 237] #2. Range [[42.7, 62.9]
Dims [256, 266] Dims [256, 266]

Bandpass filtered

Original image ) .
(deriv of gaussian}’



#1: Range [-42.7, 68.49] #2: Range [4.86e-017, 68.49] #3. Range [0.1849, 24.49]
Dims [256, 256] Dims [256, 256] Dims [256, 256]

Bandpass filtered Absolute value Blurred
absolute value

24



#1: Range [-42.7, 65.9] #2: Range [-3.058, 3.42]
Dims= [256, 256] Dims [256, 256]

Bandpass filtered Bandpass filtered and
contrast normalized



Bandpass filtered Bandpass filtered aréd
contrast normalized



Bayesian methods

27



Simple, prototypical vision problem

Observe some product of two numbers, say 1.0.

What were those two numbers?
Ie, 1 =ab. Find a and b.

Cf, sitmple prototypical graphics problem: here are
two numbers; what’s their product?

28



l=ab

hyperbola of feasible solutions

/




Bayesian approach

 Want to calculate P(a, b |y =1).
« Use P(a,b|y=1)=kP(y=l]a, b) P(a, b).

A A A

Likelihood function

Prior probability

Posterior probability 30



Likelihood function, P(obs|parms)

* The forward model, or rendering model,
taking into account observation noise.

* Example: assume Gaussian observation
noise. Then for this problem:

1 _(1-ab)’

P(y=1|a,b)= e 29
2mo

31



Prior probability

* In this case, we’ll assume P(a,b)=P(a)P(b),
and P(a) = P(b) = const., 0<a<4.

32



Posterior probability

* Posterior = k likelthood prior

(1-ab)’

P(a,b|y=1)=ke 2°

for 0 < a,b<4,
0 elsewhere

33



D. H. Brainard and W. T.
Freeman, Bayesian Color
Constancy, Journal of the
Optical Society of
America, A, 14(7), pp.
1393-1411, July, 1997
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[Loss functions

35



«—— Cross-section
at (1,1)

cross-section
at (4,1/4)

Ajjgeqoud Jousysod

0
- —
perpendicular
distance from ridge

(b) Ridge Thickness

Variations

Figure 1l: Bayesian analysis of the problem ab = 1.
Assuming uniform prior probabilities over the graphed
region, (a) shows the posterior probability for gaussian
observation noise of variance 0.18. T'he noise broadens
the geometric solution into a hyperbola—shaped ridge of
maximum prebability. (b) Note the different thickness
of the ridge; some parts have more local probability
mass than others, even though the entire ridge has a
constant maximum height.

36

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



lOSS

estimate

true value

37



Bayesian decision theory

parameter variable. z. A loss function L(z.z) specifies the penalty for estimating z when the
frue value is z, Kknowing the posterior probability. one can select the parameter values which

minimize the expected loss for a particular loss function:
[expected loss] = /[po.‘stcriur] loss function] d [parameters]
- . T : - }
Rizly) = -C /[cxp [— 5o |y — f[lz)”‘a] P,lz)] Llz.z) daz. (21)

where we have substituted from Bayes™ rule. Eq. (4). and the noise model. Eq. (3). The optimal

estimate is the parameter z of minimum risk,

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 38
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



(b) MMSE loss fn.

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

39



, 14(7), pp. 1393-1411, July, 1997

) MMSE risk

(e) (minus



(a) MAP loss fn.

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 41
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

(d) (minus) MAP risk

42
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¢) MLM loss

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

Il.
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Local mass loss function may be
useful model for perceptual tasks

44
http://sportsillustrated.cnn.com/baseball/college/2000/college world_series/news/2000/06/15/cws_notebook ap/tl borchard ap 01.jpg



45

MLM risk

)

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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Figure 2: Left column: Three loss functions. Plots
show penalty for guessing parameter values otfset from
the actual value, taken to be the plot center. (a) Minus
delta function loss, assumed in MAP estimation. Only
precisely the correct answer matters. (b) Squared er-
ror loss (a parabola), used in MMSE estimation. Very
wrong guesses can carry inordinate influence, (¢) Mi-
nus local mass loss function. Nearly correct answers are
rewarded while all others carry nearly equal penalty.
Right column: Corresponding expected loss, or Bayes
risk, for the v = ab problem. Note: loss wncreases ver-
tically, to show extrema. (d) Expected loss for MAP
estiinator 1s 1minus the posterior probability. There is
no unique point of mininnun loss. (e) The minimum
mean squared error estimate, (1.3,1.3) (arrow) does not
lie along the ridge of solutions to ab = 1. (f) The mi-
nus local mass loss favors the point (1.0,1.0) (arrow),
where the ridge of high probability 1s widest. There is
the most probability mass i that local neighborhood.

46
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



Figure 3: Visual comparison of illumination spec-
trum estimates for four ceolor constancy algorithns:
local mass, gray world, MADP and subspace. lor a
given Hlluminant, shown i dark line, a set of surfaces
was drawn ifrom the prior distribution 19 times. For
each draw, each algorithm estimated the illuminant
reflectance spectrum. The maximum local mass esti-
mates, {a), are grouped closest to the actual illumina-
tion spectrum. The gray world algorithm estimates,
(b), have wider variability. The MAP estimator, (c],
1gnores relevant information in the posterior cdistribu-
tlon, which results in a systematic blas ol 1ts estlmates.
The subspace algerithim, (d), was not designed to work
under the tested conditions, and performs poorly.

48
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Figure 4: Summary resulis. (a)] shows the perfor-
mance of all four algorithms for three jluminants. (b)
shows the performance of all four algorithms for three
surface draw conditions. The performance measure is
the average (over 19 individual runsj fractional root
mean squared error (HMSE) between the estunate and
true Mluminant. For all conditions, the MLM estimate
performs substantially better than the other algerithms.
It 15 seen to be robust against these vielations of its prior

assumptions.

49

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



Regularization vs Bayesian
interpretations

Regularization: (1 a b) + ﬂ/( a’ + b )

minimize

~(1-ab)’

2 _ 2 2
Bayes: e 20 e ﬂ“(a +b )

maximize T T

likelthood prior

50



Bayesian interpretation of
regularization approach

e For this example:

— Assumes Gaussian random noise added before
observation

— Assumes a particular prior probability on a, b.

— Uses MAP estimator (assumes delta fn loss).

51



Why the difference matters

Know what the things mean

Speak with other modalities 1n language of
probability

[Loss function

Bayes also offers principled ways to choose

between different models.

52



Example 1image

53



Multiple shape explanations

shapes for different assumed light directions

54
W. T. Freeman, The generic viewpoint assumption in a_framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.



Generic shape interpretations render to
the 1mage over a range of light directions

shape 5 iImage
assumed . . » — -
linht directinn

image

== N

W. T. Freeman, The generic viewpoint assumption in a_framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.



[Loss function

L(s,0]y) = j P(s',0'| y)I(s,0,s',0")ds' s 0"

56



estimate

true value
loss

(&)

(b)

Figure 10: Loss [unction interpretation of generic viewpoint assumption. (a) shows the general
form for a shilt invariant loss function. The function L{z,z) describes the penalty [or guessing
the parameter z when the acutal value was z. The marginalization over generic variables of
Eq. (5} followed by MAP estimation 1s equivalent to using the loss function of (b}. (¢} Shows
another possible form for the loss function, discussed in [11, 23, 24, Gb].

57
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.



Shape probabilities

1.0 1.0

0.10 0.08 0.10

1 2 3 1 5

58
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.



Comparison of shape explanations

* Lighting
“genericity
the Shap§ . 0.48
explanation: >

29
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