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Projective Structure from Motion

T. Darrell



Administrivia

Pset 4 delayed one day; on web tomorrow.
Last lecture readings: 22

Today’s F&P readings: 13.0, 13.1, 13.4, 13.5
Today:

Projective spaces

Cross ratio

Geometric reconstruction
Factorization algorithm

Euclidean upgrade



Projective SFM approach

Ignoring at first the Euclidean constraints associated with
calibrated cameras will linearize the recovery of scene
structure and camera motion from point correspondences

Decompose motion analysis into two stages

1. recovery of the projective shape of the scene and the estimation of
the corresponding projection matrices.

2. exploit the geometric constraints associated with (partially or
fully) calibrated perspective cameras to upgrade the projective
reconstruction to a Euclidean one.



or

Review: Perspective Projection

1
P = ;MP? where M = }'C(R t)

where mZ . mZ, and mZ, denote the rows of the 3 % 4

projection matrix M



Projective SFM

Goal: Estimate M and P from (uy;,v;). ..
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Projective Ambiguity

if P; and M, are solutions to the SFM equations, then
SO are

M, = M; QO

P.=07'P,

where Q 1s a projective transformation matrix

(arbitrary nonsingular 4x4 matrix, defined up to
scale)



Projective Geometry

The means of measurement available 1n projective geometry
are even more primitive than those available 1n affine
geometry

— no notions of lengths, areas and angles (Euclidean)
— no notions of ratios of lengths along parallel lines (Affine)
— no notion of parallelism (Affine)

The concepts of points, lines and planes remain.

And a new, weaker scalar measure of the arrangement of
collinear points, the cross-ratio...



The Cross-ratio

The non-homogeneous projective coordinates of a point can
be defined geometrically in terms of cross-ratios.

Given four collinear points A<B<C<Dsuch that A, Band Care
distinct, we define the cross-ratio of these points as:

(A, B;C,D}E ¢4 DB
CB DA




{A, B; OD}dEfO_A DB
CB~ DA

The value of this cross ratio 1s independent of the
intersecting line or plane:
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FIGURE 14.2: Definition of the cross-ratio of: {a) four lines and (b} four planes. As shown

in the exercises, the cross-ratio {A, B;C, D} depends only on the three angles o, 8 and .
In particular, we have {A, B;C, D} = {A', B, ¢, D'}



Epipolar Transformation 1s Projective

Cross-ratio of any quadruple of epipolar lines 1s invariant.

Thus epipolar transform 1s projective and 1s a Homography.



Homography

Projective transform: Zcene plane /
bijective linear map

Image

plane

a.k.a. Homography

The perspective projection mapping any point Ain the
(projective closure of the) first plane onto the intersection
of the line AOwith the (projective closure of the) second
plane 1s a projective transformation.

Consider two planes and a
point Olying outside these
planes in 7.




Projective Geometry

-_r——

D

Projective plane

—— the vectors v,, vg and v below can

\ /
\t: A l J C 11 Rays R,, Ry and R associated with
B be mapped onto the points A,B,C

* The vectors v,, vg and v are linearly

Ve independent, and thus so are the
points A,B,C

* Asaray becomes close to parallel to

IT the point where it intersects I'1
moves to infinity

* Projective plane can be modeled by
adding set of points at infinity to 2-D
I1

an affine plane IT of R*



Affine plane embedded 1n projective space

pfAP 1)

RS

X }:[Ei
(AL

(0, 0y

ya
Add (0,1) to affine plane ¥ % P(X x R)
to represent the Ayperplane af infinity oOx

This projective completion justifies the notion of
homogeneous coordinates.



Geometric reconstruction

Geometric construction of the projective coordinates
of the point D 1n the basis formed by the five
points A, B, C, Oand O .




Observe four non-coplanar points A<B<C<Dwith a weakly-calibrated
stereo rig. Let O’ / O” denote the position of the optical center of the
first / second camera. Let:

* P be the intersection of the ray O’ Pwith the plane ABC
* P’ be the intersection of the ray O” Pwith the plane ABC
* p’ be projection of Pinto the first image

* p’ be projection of Pinto the second image

The epipoles are e’ and e and the baseline intersects the plane ABCin E.
(Clearly, in projective coordinates ' =FE"=FE, A'= A" = A, etc.)



We choose A<B<C<O’<(0" as a basis for projective three-space, and our
goal 1s to reconstruct the position of D.



We choose A<B<C<O’<(0" as a basis for projective three-space, and our
goal 1s to reconstruct the position of D.

Choosing a’<b’<c’<e’ as a basis for the first image plane, we can measure the
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coordinates of d’ in this basis and reconstruct the point D’ in the basis
A<B<C<Fof the plane ABC.

Similarly, we can reconstruct the point D" from the projective coordinates
d’ in the basis a’<b”’<c”’<e” of the second image plane.

The point Dis finally reconstructed as the intersection of the two lines OD
and OD.



We can now express this geometric construction in algebraic terms. It turns

out to be simpler to reorder the points of our projective frame and to calculate

the non-homogeneous projective coordinates of Din the basis formed by the tetrahedron
A<O<O<Band the unit point C. These coordinates are defined by the

following three cross-ratios:

ko = {O"0'A, O'0'B; 0"0'C, 0”0’ D},
= {0'A0", O'AB; O'AC, O'ADY},
ko = {AO"O', AO"B; AO"C, AO"D}.

By intersecting the corresponding pencils of planes with the two image planes
we immediately obtain the values of k0<k1<k2 as cross-ratios directly measurable in

the two images:
kO _ {Sfafr} efbf; S’FC”} efdf} _ {8”{1”} eff'bf'f; H H f‘f‘df';'}
kl _ {C{ﬁfe’f !bf; a!c;’ a!d!}
kg _ {aff 1 affbff; H H def}



(b)\ (c)

FIGURE 14 .4: Geometric point reconstruction: (a) input data; (b) raw projective coordi-
nates; (¢ corrected projective coordinates. Reprinted from [Ponce et al., 1993], Figures 1
and 9.




Factorization approach to Projective SFM

Use multiple frame sequence....

Generalize Tomasi-Kanade to the projective case...

Given mimages of npoints, we can express the data matrix as

with D = MP,

11744 1214 s Fim Ity ., Mi
def def def
D= | P b P | pq %t | Mo g p % (p, P, P,

Mo

Fmilypy  Em2Ppmy oo Fmnlhpgy



Factorization approach to Projective SFM

11744 1214 s Fim Ity ., Mi
D= MP, plet | #22Pas #mPar o FaePan | et [ Ma] g p d (P, Ps ... P.).

Freed Prnq Frrn 2 P o cen e e o)

As the product of 3mX 4 and 4 x nmatrices, the 3mx
nmatrix @ has (at most) rank 4

It the projective depths z;; were known, we could
compute M and @, by using singular value
decomposition to factor .

If M and @ were known, we can solve directly for
the values of the projective depths.



[terative approach

Ay

11904 &1 L Fim Iy,

EA

T — M:D, Dd:ef (3211‘321 Fa2 Ty Zan Py ) .M d:ef (Mz) and P d:ef (Pi P, ..

Fmilypy  Em2Ppmy oo Fmnlhpgy

This suggests an iterative scheme for estimating the
unknowns z;; , M and @by alternating steps where

some of these unknowns are held constant while
others are estimated.

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor ®.

— Assume M and @ 4V | \:d VV] U \[ solve directly
for the values of the projective depths.



D = MP,

[terative approach

T11Ty 1ol cen FinTyn Ay
D d:ef Za1T0y Zaa Pron - Zan Pran , M dZEf M2 and :.D dZEf (Pi Pg P

Mo

Fmilypy  Em2Ppmy oo Fmnlhpgy

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

— Assume M and V] \:2 (VV]]U -\[ solve directly
for the values of the projective depths.



Iterative approach to Projective

Factorization
11744 1214 s Fim Ity ., Mi
D = MP, p et | #uPu 2P e FoaPa | g def My and P 2 (Pi P, .
Zmiley  FmIlye oo Fma o Mo

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

— Assume M and ? 4V | \2.d V'V ||U -\ | solve directly
for the values of the projective depths.

...use Tomasi and Kanade SVD algorithm



Review: Affine case

With an appropriate choice of origin (e.g., first point,
centriod),

and the data matrix becomes:

p & (ql qn):AP



Review: Affine case

D —

A

Data-Matrix = Affine-Motions x 3-d-Points
2mxn) = 2mx3) x (3xn)

2m =

2m

3

D is rank 3 in

affine case



Review: Factorization algorithm

G1ven a data matrix,

find Motion (A) and Shape (P) matrices that generate
that data...

Tomas1 and Kanade Factorization algorithm (1992):

Use Singular Value Decomposition to factor D into
appropriately sized A and P.



Review: SVD

Technique: Singular Value Decomposition Let .4 be an m X n matrix, with

m > n, then A can always be written as
A =UWV7,

where:
e If is an m X n column-orthogonal matrix, i.e., U7 U = 1d,,,

e W is a diagonal matrix whose diagonal entries w; (¢ = 1,...,n) are the singular
values of A with w1 > we = ... = wns =0,

e and V is an » X n orthogonal matrix, i.e., VIV = VWT =1d,.

The SVD of a matrix can also be used to characterize matrices that are rank-deficient:
suppose that A has rank ¢ < n, then the matrices L4, ¥V, and V can be written as

T
We 190 and VT =02

U=[Up [Un—p ] W=3"T5 Vi

3




Review: Affine Factorization algorithm

. Compute the singular value decomposition D = UWVT,
. Construct the matrices 3, Vi3, and Ws formed by the three leftmost
columns of the matrices {{ and V, and the corresponding 3 x 3 sub-matrix

of W.

. Define

Ag=U; and Py = WsVi;

the 2m x 3 matrix Ag is an estimate of the camera motion, and the 3 x n
matrix Py 1s an estimate of the scene structure.



Review: Affine Factorization algorithm
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Iterative approach to Projective

Factorization
11744 1214 s Fim Ity ., Mi
D = MP, p et | #uPu 2P e FoaPa | g def My and P 2 (Pi P, .
Zmiley  FmIlye oo Fma o Mo

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

— Assume M and ? 4V | \2.d V'V ||U -\ | solve directly
for the values of the projective depths.

...use Tomasi and Kanade SVD algorithm



Iterative approach to Projective

Factorization
11744 1214 s Fim Ity ., Mi
D = MP, p et | #uPu 2P e FoaPa | g def My and P 2 (Pi P, .
Zmiley  FmIlye oo Fma o Mo

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

— Assume M and ? 4V | \2.d (VV]]|U -\ [ solve directly
for the values of the projective depths.

Find z;; that best fit ®and ...



Iterative approach to Projective

Factorization
11744 1214 s Fim Ity ., Mi
D=Mp,  pU| mPn mPn . EePn | gl (Moo p p p)
Zmiley  FmIlye oo Fma o Mo

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

— Assume M and ? 4V | \2.d (VV]]|U -\ [ solve directly
for the values of the projective depths.

Find z;; that best fit ®and ...
... express as solution to generalized eigenvalue problem



Find z; that best fit ?and M...

Goal:;

def
E =D —M’F’F = Z|E¢;;Pj —M¢P:E|Q;

£



Find z; that best fit ?and M...

Goal:;

def
E=|D- M’F’F = Z|E¢;;Pj —M¢P:E|Q;
£
or
def =
Ej; = Z|zéj;pj - Mz'Pj;F.

=1



Find z; that best fit ?and M...

Goal:
g D — MP|? = Z | 2552, — M P54
5
or
B, & i@pj — MPS2.
=1

which must satisfy

BE; - T
0= 5D, 2;”& (2i5p5 — MP;),

)




Find z; that best fit ?and M...

Goal:
g D — MP|? = Z | 2552, — M P54
5
or
B, & i@pj — MPS2.
=1

which must satisfy
oE. =
0= j. = 22.91"/(3—'(2@31}?@: — MéP;f ):'

oF

b
SO

MEd; = MEMP; = P; = M'd;,



Find z; that best fit ?and M...

Goal:
g D — MP|? = Z | 2552, — M P54
5
or
B, & i@pj — MPS2.
=1

which must satisfy
oE. =
0= j. = 22.91"/(3—'(2@31}?@: — MéP;f ):'

oF

b
SO

MEd; = MEMP; = P; = M'd;,
and thus

E; = |(Id — MM ;).



Find z; that best fit ?and M...

Take SVD of M
M=V



Find z; that best fit ?and M...
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and rewrite
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B = |[ld —uu)d;|* = 1 — |Ud;|*.
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Find z; that best fit ?and M...

Take SVD of M
M=V
and rewrite

E; = |(Id — MM ;).
as

B = |[ld —uu)d;|* = 1 — |Ud;|*.

We need to thus maximize |Ud;| under constraint |d,|*=1

which is the same as maximizing |R;z;|? with |Q,z,;/? = 1 where R, € uTg,



Find z; that best fit ?and M...

Take SVD of M
M=V
and rewrite

E; = |(Id — MM ;).
as

B = |[ld —uu)d;|* = 1 — |Ud;|*.

We need to thus maximize |Ud;| under constraint |d,|*=1

which is the same as maximizing |R;z;|? with |Q,z,;/? = 1 where R, € uTg,

Finally this can be expressed as a solution to a generalized eigenvalue
problem to find z; corresponding to largest A s.t.  RTR,z; = 20T Q;z,

with |
d;= Qz;, where Q. def 0 po; ... ,

=



Iterative approach to Projective

Factorization
11744 1214 s Fim Ity ., Mi
D=Mp,  pU| mPn mPn . EePn | gl (Moo p p p)
Zmiley  FmIlye oo Fma o Mo

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

— Assume M and ? 4V | \2.d (VV]]|U -\ [ solve directly
for the values of the projective depths.

Find z;; that best fit ®and ...
... express as solution to generalized eigenvalue problem



Iterative approach to Projective

Factorization
11744 1214 s Fim Ity ., Mi
D=Mp,  pU| mPn mPn . EePn | gl (Moo p p p)
Zmiley  FmIlye oo Fma o Mo

— Assume projective depths z;; are known, and compute M
and @, using singular value decomposition to factor .

...use Tomasi and Kanade SVD algorithm

— Assume M and @ V| 13 (VV]|U \[ solve directly
for the values of the projective depths.

Find z;; that best fit ®and ...
... express as solution to generalized eigenvalue problem.



Proj. SFM algorithm

. Compute an initial estimate of the projective depths z;;, with i=1,.. ., m
and §=1,...,n.

. Normalizge each column of the data matrix 70,

. Repeat:

(a) use singular value decomposition to compute the 2m x 4 matrix A
and the 4 x n» matrix P that minimige [D — MP|%

(b) for j =1 to n, compute the matrices R; and O; and find the value
of z; that maximize |R;z;|% under the constraint |Q,z;]? = 1 as the
solution of a peneralized eipenvalue problermn;

(¢) update the value of D accordingly;

until convergence.



mal erer (Akmatk]
mansmarinnery
uerage oror (AREmak] ————
AIETa morinne]

FIGURE 14.5: Iterative projective estimation of camera motion and scene structure: (a)
the first and last images in the sequence; (b) plot of the average and maximum reprojection
error a3 a function of iteration number. Two experiments were conducted: in the first one
(alternate) alternate imapges in the sequence are used as training and testing datasets; in
the second experiment (inner), the first five and last five pictures were used as training
set, and the remaining imapges were used for testing. In both cases, the average arror falls
below 1 pixel after 15 iterations. Reprinted from [Mahamud and Hebert, 2000], Figure 4.



Bundle adjustment

Given initial estimates for the matrices Mi (i= 1<>>>m) and vectors Pj (j= 1<ob>n), we
can refine these estimates by using non-linear least squares to minimize the global error
measure




Euclidean upgrade

Given a camera with known intrinsic parameters, we can take the
calibration matrix to be the identity and write the perspective
projection equation in some Euclidean world coordinate system as

p= (R ) (f) _ /\L(R M) (Aﬂ

Z Z

for any non-zero scale factor A.

If M; and P; denote the shape and motion parameters measured in some
Euclidean coordinate system, there must exist a 4 x4 matrix Q such
that

J\;lg — M; QO and 135 — Q_1P5+



Euclidean upgrade

Fa

M = piKi(Ri &),

where p. accounts for the unknown scale of M, and K; 1s a
calibration matrix

M Qs = piiR.

the 3%3 matrices M, Q); are in this case scaled rotation
matrices. -

mEQgngﬁ =0,
tSQSQS my;; — O:'
1Q3Q3 mi1 — m030ims =0,
mL030im;s — mL030im;3 = 0.



Euclidean upgrade

 can also perform upgrade when partial calibration
1S known

* even just knowledge of zero-skew



Euclidean upgrade

FIGURE 14.6: A synthetic texture-mapped imapge of a castle constructed via projective
maotion analysis followed by a Euclidean upgrade. The principal point iz assumed to be
known. Reprinted from [Pollefeys, 1999, Figure 6.13.



Administrivia

Pset 4 delayed one day; on web tomorrow.
Last lecture readings: 22

Today’s F&P readings: 13.0, 13.1, 13.4, 13.5
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[Most figures from F&P]
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