
6.801/866

Projective Structure from Motion

T. Darrell



Administrivia

Pset 4 delayed one day; on web tomorrow.
Last lecture readings: 22
Today’s F&P readings: 13.0, 13.1, 13.4, 13.5
Today:

Projective spaces
Cross ratio
Geometric reconstruction
Factorization algorithm
Euclidean upgrade



Projective SFM approach

Ignoring at first the Euclidean constraints associated with 
calibrated cameras will linearize the recovery of scene 
structure and camera motion from point correspondences

Decompose motion analysis into two stages
1. recovery of the projective shape of the scene and the estimation of 

the corresponding projection matrices.
2. exploit the geometric constraints associated with (partially or 

fully) calibrated perspective cameras to upgrade the projective 
reconstruction to a Euclidean one.



Review: Perspective Projection

or

where                              denote the rows of the 3 × 4 
projection matrix M



Projective SFM

Goal:  Estimate M and P from (uij,vij)…



Projective Ambiguity

if Pj and Mi are solutions to the SFM equations, then 
so are

where Q is a projective transformation matrix 
(arbitrary nonsingular 4x4 matrix, defined up to 
scale)



Projective Geometry

The means of measurement available in projective geometry 
are even more primitive than those available in affine
geometry
– no notions of lengths, areas and angles (Euclidean)
– no notions of ratios of lengths along parallel lines (Affine)
– no notion of parallelism (Affine)

The concepts of points, lines and planes remain.
And a new, weaker scalar measure of the arrangement of 

collinear points, the cross-ratio…



The Cross-ratio

The non-homogeneous projective coordinates of a point can 
be defined geometrically in terms of cross-ratios.

Given four collinear points A,B,C,Dsuch that A, Band Care 
distinct, we define the cross-ratio of these points as:



The value of this cross ratio is independent of the 
intersecting line or plane:



Epipolar Transformation is Projective

Cross-ratio of any quadruple of epipolar lines is invariant.
Thus epipolar transform is projective and is a Homography.



Homography

The perspective projection mapping any point Ain the 
(projective closure of the) first plane onto the intersection 
of the line AOwith the (projective closure of the) second 
plane is a projective transformation. 

Projective transform: 
bijective linear map          
a.k.a. Homography

Consider two planes and a 
point Olying outside these 
planes in E3.



Projective Geometry

• Rays RA, RB and RC associated with 
the vectors vA, vB and vC below can 
be mapped onto the points A,B,C

• The vectors vA, vB and vC are linearly 
independent, and thus so are the
points A,B,C

• As a ray becomes close to parallel to 
Π the point where it intersects Π
moves to infinity

• Projective plane can be modeled by 
adding set of points at infinity to 2-D 
Π



Affine plane embedded in projective space

Add (0,1) to affine plane
to represent the

This projective completion justifies the notion of 
homogeneous coordinates.



Geometric reconstruction

Geometric construction of the projective coordinates 
of the point D in the basis formed by the five 
points A, B, C, O and O .



Observe four non-coplanar points A,B,C,Dwith a weakly-calibrated 
stereo rig. Let O’ / O’’ denote the position of the optical center of the 
first / second camera. Let:

• P’ be the intersection of the ray O’Pwith the plane ABC
• P’’ be the intersection of the ray O’’Pwith the plane ABC
• p’ be projection of Pinto the first image
• p’’ be projection of Pinto the second image
The epipoles are e’ and e’’ and the baseline intersects the plane ABCin E. 

(Clearly, in projective coordinates  E’ = E’’ = E, A’ = A’’ = A, etc.)
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We can now express this geometric construction in algebraic terms. It turns
out to be simpler to reorder the points of our projective frame and to calculate
the non-homogeneous projective coordinates of Din the basis formed by the tetrahedron
A,O,O,Band the unit point C. These coordinates are defined by the
following three cross-ratios:

By intersecting the corresponding pencils of planes with the two image planes
we immediately obtain the values of k0,k1,k2 as cross-ratios directly measurable in
the two images:





Factorization approach to Projective SFM

Use multiple frame sequence….
Generalize Tomasi-Kanade to the projective case…

Given mimages of npoints, we can express the data matrix as

with



Factorization approach to Projective SFM

As the product of 3m× 4 and 4 × nmatrices, the 3m× 
nmatrix D has (at most) rank 4

If the projective depths zij were known, we could 
compute M and P, by using singular value 
decomposition to factor D.

If M and P were known, we can solve directly for 
the values of the projective depths.



Iterative approach

This suggests an iterative scheme for estimating the 
unknowns zij , M and P by alternating steps where 
some of these unknowns are held constant while 
others are estimated.

– Assume projective depths zij are known, and compute M
and P, using singular value decomposition to factor D.

– Assume M and P a∇e \ow co∇∇ect a\d solve directly 
for the values of the projective depths.



Iterative approach

– Assume projective depths zij are known, and compute M
and P, using singular value decomposition to factor D.

– Assume M and P a∇e \ow co∇∇ect a\d solve directly 
for the values of the projective depths.



Iterative approach to Projective 
Factorization

– Assume projective depths zij are known, and compute M
and P, using singular value decomposition to factor D.

– Assume M and P a∇e \ow co∇∇ect a\d solve directly 
for the values of the projective depths.

…use Tomasi and Kanade SVD algorithm



Review: Affine case

With an appropriate choice of origin (e.g., first point, 
centriod), 

and the data matrix becomes:



Review: Affine case

D     =       A      P 
Data-Matrix = Affine-Motions  x 3-d-Points

(2m x n)  =  (2m x 3)  x  (3 x n)

2m

n 3

3 n

= 2m

D is rank 3 in
affine case



Review: Factorization algorithm

Given a data matrix,
find Motion (A) and Shape (P) matrices that generate 

that data…

Tomasi and Kanade Factorization algorithm (1992):
Use Singular Value Decomposition to factor D into 

appropriately sized A and P.



Review: SVD



Review: Affine Factorization algorithm



Review: Affine Factorization algorithm

Input

result

comparision



Iterative approach to Projective 
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Iterative approach to Projective 
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Iterative approach to Projective 
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Iterative approach to Projective 
Factorization

– Assume projective depths zij are known, and compute M
and P, using singular value decomposition to factor D.

– Assume M and P a∇e \ow co∇∇ect a\d solve directly 
for the values of the projective depths.

…use Tomasi and Kanade SVD algorithm

Find zij that best fit P and M…
… express as solution to generalized eigenvalue problem.



Proj. SFM algorithm





Bundle adjustment

Given initial estimates for the matrices Mi (i= 1,...,m) and vectors Pj (j= 1,...,n), we 
can refine these estimates by using non-linear least squares to minimize the global error 
measure



Euclidean upgrade

Given a camera with known intrinsic parameters, we can take the 
calibration matrix to be the identity and write the perspective 
projection equation in some Euclidean world coordinate system as

for any non-zero scale factor λ.

If Mi and Pj denote the shape and motion parameters measured in some 
Euclidean coordinate system, there must exist a 4 ×4 matrix Q such 
that



Euclidean upgrade

where ρi accounts for the unknown scale of Mi, and Ki is a 
calibration matrix

the 3×3 matrices MiQ3 are in this case scaled rotation 
matrices.



Euclidean upgrade

• can also perform upgrade when partial calibration 
is known

• even just knowledge of zero-skew



Euclidean upgrade
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