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Segmentation and Line Fitting

• Gestalt grouping
• Background subtraction
• K-Means
• Graph cuts
• Hough transform
• Iterative fitting

(Next time: Probabilistic segmentation)



Segmentation and Grouping

• Motivation: vision is often 
simple inference, but for 
segmentation

• Obtain a compact 
representation from an 
image/motion 
sequence/set of tokens

• Should support application
• Broad theory is absent at 

present

• Grouping (or clustering)
– collect together tokens that 

“belong together”

• Fitting
– associate a model with 

tokens
– issues

• which model?
• which token goes to which 

element?
• how many elements in the 

model?



General ideas

• tokens
– whatever we need to group 

(pixels, points, surface 
elements, etc., etc.)

• top down segmentation
– tokens belong together 

because they lie on the 
same object

• bottom up segmentation
– tokens belong together 

because they are locally 
coherent

• These two are not 
mutually exclusive



Why do these tokens belong together?



What is the figure?



Basic ideas of grouping in humans

• Figure-ground 
discrimination
– grouping can be seen in 

terms of allocating some 
elements to a figure, some 
to ground

– impoverished theory

• Gestalt properties
– elements in a collection of 

elements can have 
properties that result from 
relationships (Muller-Lyer 
effect)

• gestaltqualitat
– A series of factors affect 

whether elements should be 
grouped together

• Gestalt factors











Occlusion is an important cue in grouping.







Technique:  Background Subtraction

• If we know what the 
background looks like, it 
is easy to identify 
“interesting bits”

• Applications
– Person in an office
– Tracking cars on a road
– surveillance

• Approach:
– use a moving average to 

estimate background image
– subtract from current frame
– large absolute values are 

interesting pixels
• trick: use morphological 

operations to clean up 
pixels





low thresh high thresh

EM (later)

80x60



low thresh high thresh

EM (later)

160x120



Classic Background Subtraction model

• Background is assumed to be mostly static
• Each pixel is modeled as by a gaussian 

distribution in YUV space
• Model mean is usually updated using a recursive 

low-pass filter

Given new image, generate silhouette
by marking those pixels that are significantly
different from the “background” value.



Finding Features

2D Head / hands localization
– contour analysis: mark extremal points (highest 

curvature or distance from center of body) as hand 
features

– use skin color model when region of hand or face is 
found (color model is independent of flesh tone 
intensity)



Static Background Modeling Examples

[MIT Media Lab Pfinder / ALIVE System]



Static Background Modeling Examples

[MIT Media Lab Pfinder / ALIVE System]



Static Background Modeling Examples

[MIT Media Lab Pfinder / ALIVE System]



Dynamic Background

BG Pixel distribution is non-stationary:

[MIT AI Lab VSAM]



Mixture of Gaussian BG model

Staufer and Grimson tracker:
Fit per-pixel mixture model to observed distrubution.

[MIT AI Lab VSAM]



Segmentation as clustering

• Cluster together (pixels, 
tokens, etc.) that belong 
together

• Agglomerative clustering
– attach closest to cluster it is 

closest to
– repeat

• Divisive clustering
– split cluster along best 

boundary
– repeat

• Point-Cluster distance
– single-link clustering
– complete-link clustering
– group-average clustering

• Dendrograms
– yield a picture of output as 

clustering process continues



Clustering Algorithms





K-Means

• Choose a fixed number of 
clusters

• Choose cluster centers and 
point-cluster allocations to 
minimize error 

• can’t do this by search, 
because there are too 
many possible allocations.

• Algorithm
– fix cluster centers; allocate 

points to closest cluster
– fix allocation; compute best 

cluster centers

• x could be any set of 
features for which we can 
compute a distance 
(careful about scaling)
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K-Means



Image Clusters on intensity (K=5) Clusters on color (K=5)

K-means clustering using intensity alone and color alone



Image Clusters on color

K-means using color alone, 11 segments



K-means using
color alone,
11 segments.

Oversegmentation!



K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!



Graph theoretic clustering

• Avoid local minima; use 
global criteria

• Represent tokens using a 
weighted graph.
– affinity matrix

• Cut up this graph to get 
subgraphs with strong 
interior links



Image Segmentation as Graph Partitioning

Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between 
pairs of nearby pixels

region       
 same  the tobelong       

j& iy that probabilit :ijW

Partition graph so that similarity within group is large and 
similarity between groups is small -- Normalized Cuts
[Shi&Malik 97]

[Malik]



Some Terminology for Graph 
Partitioning

• How do we bipartition a graph:

disjointy necessarilnot  A' andA 
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Boundaries of image regions defined by a 
number of attributes

– Brightness/color
– Texture
– Motion
– Stereoscopic depth
– Familiar configuration

[Malik]



Measuring Affinity

Intensity
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Eigenvectors and cuts

• Simplest idea:  we want a 
vector a giving the 
association between each 
element and a cluster

• We want elements within 
this cluster to, on the 
whole, have strong affinity 
with one another

• We could maximize  

• But need the constraint 

• This is an eigenvalue
problem - choose the 
eigenvector of A with 
largest eigenvalue

aT Aa

aTa = 1



Example eigenvector

eigenvector

points

matrix



Scale affects affinity

σ=.2

σ=.1 σ=.2 σ=1



Scale affects affinity

σ=.2

σ=.1 σ=.2 σ=1



More than two segments

• Two options
– Recursively split each side to get a tree, continuing till 

the eigenvalues are too small
– Use the other eigenvectors



More than two segments



Normalized cuts

• Current criterion evaluates 
within cluster similarity, 
but not across cluster 
difference

• Instead, we’d like to 
maximize the within 
cluster similarity 
compared to the across 
cluster difference

• Write graph as V, one 
cluster as A and the other 
as B

• Maximize

where cut(A,B) is sum of 
weights that straddle A,B; 
assoc(A,V) is sum of all 
edges with one end in A.

I.e. construct A, B such that 
their within cluster 
similarity is high 
compared to their 
association with the rest of 
the graph

cut(A,B)
assoc(A,V)

cut(A,B)
assoc(B,V)

+



Normalized Cut

• Minimum cut (total weight of edges removed) is not 
appropriate since it favors cutting small pieces.

• Normalized Cut, Ncut:
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[Malik]



Solving the Normalized Cut problem

• Exact discrete solution to Ncut is NP-complete 
even on regular grid,
– [Papadimitriou’97]

• Drawing on spectral graph theory, good 
approximation can be obtained by solving a 
generalized eigenvalue problem.

[Malik]



Normalized cuts

• Write a vector y whose 
elements are 1 if item is in 
A, -b if it’s in B

• Write the matrix of the 
graph as W, and the 
matrix which has the row 
sums of W on its diagonal 
as D, 1 is the vector with 
all ones.

• Criterion becomes

and we have a constraint

• This is hard to solve, 
because y’s values are 
quantized

miny
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Normalized Cut As Generalized 
Eigenvalue problem
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Normalized cuts

• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximizes the 
criterion --- i.e all components of y above that threshold go 
to one, all below go to -b

maxy yT D − W( )y( ) subject to yT Dy = 1( )

D − W( )y = λDy



(using intensity and texture affinity)
Figure from “Image and video segmentation: the normalised cut framework”, 
by Shi and Malik, copyright IEEE, 1998



(using motion / spatio-temporal 
affinity)

F igure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000



Fitting

• Choose a parametric 
object/some objects to 
represent a set of tokens

• Most interesting case is 
when criterion is not local
– can’t tell whether a set of 

points lies on a line by 
looking only at each point 
and the next.

• Three main questions:
– what object represents this 

set of tokens best?
– which of several objects 

gets which token?
– how many objects are 

there?

(you could read line for object 
here, or circle, or ellipse 
or...)



Fitting and the Hough Transform

• Purports to answer all 
three questions
– in practice, answer isn’t 

usually all that much help

• We do for lines only
• A line is the set of points 

(x, y) such that

• Different choices of θ, 
d>0 give different lines

• For any (x, y) there is a 
one parameter family of 
lines through this point, 
given by

• Each point gets to vote for 
each line in the family; if 
there is a line that has lots 
of votes, that should be the 
line passing through the 
points

sinθ( )x + cosθ( )y + d = 0
sinθ( )x + cosθ( )y + d = 0



tokens
votes



Mechanics of the Hough transform

• Construct an array 
representing θ, d

• For each point, render the 
curve (θ, d) into this array, 
adding one at each cell

• Difficulties
– how big should the cells be? 

(too big, and we cannot 
distinguish between quite 
different lines; too small, 
and noise causes lines to be 
missed) 

• How many lines?
– count the peaks in the 

Hough array

• Who belongs to which 
line?
– tag the votes

• Hardly ever satisfactory in 
practice, because 
problems with noise and 
cell size defeat it



tokens votes









Line fitting

What criteria to optimize when fitting a line to a set 
of points?



“Least Squares”

“Total Least Squares”

Line fitting can be max.
likelihood - but choice of
model is important



Who came from which line?

• Assume we know how many lines there are - but 
which lines are they?
– easy, if we know who came  from which line

• Three strategies
– Incremental line fitting
– K-means
– Probabilistic (later!)





Incremental line fitting



Incremental line fitting



Incremental line fitting



Incremental line fitting



Incremental line fitting





K-means line fitting



K-means line fitting



K-means line fitting



K-means line fitting



K-means line fitting



K-means line fitting



K-means line fitting



Robustness

• As we have seen, squared error can be a source of 
bias in the presence of noise points
– One fix is EM  - we’ll do this shortly
– Another is an M-estimator

• Square nearby, threshold far away

– A third is RANSAC
• Search for good points

(Next lecture….)



Segmentation and Line Fitting

• Gestalt grouping
• Background subtraction
• K-Means
• Graph cuts
• Hough transform
• Iterative fitting

(Next time: Probabilistic segmentation)

[Most figures from F&P or             
http://iram.cs.berkeley.edu/RetreatJul2000/malik.ppt]
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