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Fitting and Probabilistic
Segmentation

• Robust estimation
• RANSAC
• EM
• Model Selection



Robustness

• As we have seen, squared error can be a source of 
bias in the presence of noise points
– One fix is EM  - we’ll do this shortly
– Another is an M-estimator

• Square nearby, threshold far away

– A third is RANSAC
• Search for good points











M-Estimators

Generally, minimize

where





Robust EstimationRobust Estimation
A quadratic ρ function gives too much weight to outliers
Instead, use robust norm:

Influence function 
(d/dr of norm):
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Too small



Too large



Robust scale

Scale is critical!

Popular choice:



Extreme segmentation

What if more than half the points are noise?



RANSAC

• Iterate:
– Sample
– Fit 
– Test

• Keep best estimate; refit on inliers



RANSAC

• Issues
– How many times?

• Often enough that we are 
likely to have a good line

– How big a subset?
• Smallest possible

– What does close mean?
• Depends on the problem

– What is a good line?
• One where the number of 

nearby points is so big it is 
unlikely to be all outliers

• Choose a small subset 
uniformly at random

• Fit to that
• Anything that is close to 

result is signal; all  others 
are noise

• Refit
• Do this many times and 

choose the best





RANSAC applications

• Fundamental Matricies
– estimate F from 7 points
– test agreement with all other points

• Direct motion
– estimate affine (or rigid motion) from small match
– see what other parts of image are consistent

• …



General framework

Estimate parameters from segmented data.

Consider segmentation labels to be missing data.



Missing variable problems

A missing data problem is a statistical problem 
where some data is missing

There are two natural contexts in which missing data 
are important:

• terms in a data vector are missing for some 
instances and present for other (perhaps someone 
responding to a survey was embarrassed by a 
question)

• an inference problem can be made very much 
simpler by rewriting it using some variables 
whose values are unknown.
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Missing variable problems

General case:
– Complete space X  (e.g., pixel values and labels)
– Incomplete space Y (e.g., pixel values)
– f: X->Y
– Parameters U (e.g., mixing weights cluster mean, 

covar.)

Complete log-likelihood:



Missing variable problems
• Incomplete density

yields log-likelihood

Hard to deal with: we don’t know which of the many possible x’s that could 
correspond to the y’s that we observe actually does correspond.



Strategy

For each of our examples, if we knew the missing 
data we could estimate the parameters effectively.

If we knew the parameters, the missing data would 
follow. This suggests an iterative algorithm:
1. obtain some estimate of the missing data, using a guess 

at the parameters;
2. now form a maximum likelihood estimate of the free 

parameters using the estimate of the missing data. 

and we iterate this procedure until (hopefully!) it 
converges.



Missing variable problems

In many vision problems, if some variables were 
known the maximum likelihood inference problem 
would be easy
– fitting; if we knew which line each token came from, it 

would be easy to determine line parameters
– segmentation; if we knew the segment each pixel came 

from, it would be easy to determine the segment 
parameters

– fundamental matrix estimation; if we knew which 
feature corresponded to which, it would be easy to 
determine the fundamental matrix

– etc.



EM for Mixture models

If log-likelihood is linear in missing variables we can 
replace missing variables with expectations. E.g.,

1. (E-step) estimate complete data (e.g, zj’s) using 
previous parameters

2. (M-step) maximize complete log-likelihood 
using estimated complete data

mixture model complete data log-likelihood



EM in general case

Cant substitute expectations for missing variables. 
Take expectation of the complete data log-likelihood 

with respect to the missing variables conditioned 
on the current value of the parameter:

Then maximize w.r.t. parameters



Lines and robustness

• We wish to determine
– line parameters
– p(comes from line) 

• We have one line, and n 
points

• Some come from the line, 
some from “noise”

• This is a mixture model:

P point | line and noise params( )= P point | line( )P comes from line( )+

P point | noise( )P comes from noise( )
= P point | line( )λ + P point | noise( )(1 − λ)



EM for line estimation

• We have a problem with 
parameters, missing 
variables

Iterate until convergence:
– replace missing variable 

with expected values, given 
fixed values of parameters

– fix missing variables, 
choose  parameters to 
maximise likelihood given 
fixed values of missing 
variables

• e.g.,
– allocate each point to a line 

with a weight, which is the 
probability of the point 
given the line

– refit lines to the weighted 
set of points

• Converges to local
extremum

• Somewhat more general 
form is available



Estimating the mixture model

• Introduce a set of hidden 
variables, δ, one for each 
point.  They are one when 
the point is on the line, 
and zero when off.

• If these are known, the 
negative log-likelihood 
becomes (the line’s 
parameters are φ, c):

• Here K is a normalising
constant, kn is the noise 
intensity (we’ll choose 
this later).

Qc x;θ( )=
δ i

xi cosφ + yi sinφ + c( )2
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Substituting for delta

• We shall substitute the 
expected value of δ, for a 
given θ

• recall θ=(φ, c, λ)
• E(δi)=1*P(δi=1|θ)+0....

• Notice that if kn is small 
and positive, then if 
distance is small, this 
value is close to 1 and if it 
is large, close to zero

P δi = 1|θ,xi( )=
P xi | δi = 1,θ( )P δi = 1( )

P xi |δ i = 1,θ( )P δi = 1( )+ P xi | δi = 0,θ( )P δ i = 0( )

=
exp −1

2σ 2 xi cosφ + yi sinϕ + c[ ]2( )λ
exp −1

2σ 2 xi cosφ + yi sinϕ + c[ ]2( )λ + exp −kn( )1 − λ( )



Algorithm for line fitting

• Obtain some start point

• Now compute δ’s using 
formula above 

• Now compute maximum 
likelihood estimate of 

– φ, c come from fitting to 
weighted points

– λ comes by counting 

• Iterate to convergence 

θ 0( ) = φ 0( ),c 0( ),λ 0( )( )

θ 1( )





The expected values of the deltas at the maximum
(notice the one value close to zero).



Closeup of the fit



Choosing parameters

• What about the noise parameter, and the sigma for 
the line?
– several methods 

• from first principles knowledge of the problem (seldom really 
possible)

• play around with a few examples and choose (usually quite 
effective, as precise choice doesn’t matter much)

– notice that if kn is large, this says that points very 
seldom come from noise, however far from the line 
they lie

• usually biases the fit, by pushing outliers into the line
• rule of thumb; its better to fit to the better fitting points, within 

reason; if this is hard to do, then the model could be a problem



Other examples

• Segmentation
– a segment is a gaussian that 

emits feature vectors (which 
could contain colour; or colour
and position; or colour, texture 
and position).

– segment parameters are mean 
and (perhaps) covariance

– if we knew which segment 
each point belonged to, 
estimating these parameters 
would be easy

– rest is on same lines as fitting 
line

• Fitting multiple lines
– rather like fitting one line, 

except there are more 
hidden variables

– easiest is to encode as an 
array of hidden variables, 
which represent a table with 
a one where the i’th point 
comes from the j’th line, 
zeros otherwise

– rest is on same lines as 
above



Color segmentation with EM

• At each pixel in an image, we compute a d-
dimensional feature vector x, which encapsulates 
position, colour and texture information.

• Pixel is generated by one of G segments, each 
Gaussian, chosen with probability π:



Color segmentation with EM

Parameters include mixing weights and means/covars:

yielding

with



Color segmentation with EM



Color segmentation with EM

Initialize



Color segmentation with EM

Initialize

E



Color segmentation with EM

Initialize

E
M



Color segmentation with EM



E-step



E-step

Estimate support maps:



M-step
Update mean’s, covar’s, and mixing coef.’s using 

support map:





Segmentation with EM



Motion segmentation with EM

• Model image pair (or 
video sequence) as 
consisting of regions of 
parametric motion
– affine motion is popular

• Now we need to
– determine which pixels 

belong to which region
– estimate parameters

• Likelihood
– assume

• Straightforward missing 
variable problem, rest is 
calculation
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Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE



Grey level shows region no. with highest probability

Segments and motion fields associated with them
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE



If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE



Issues with EM

• Local maxima
– can be a serious nuisance in some problems
– no guarantee that we have reached the “right” 

maximum

• Starting
– k means to cluster the points is often a good idea



Local maximum



which is an excellent fit to some points



and the deltas for this maximum



A dataset that is well fitted by four lines



but with several local minima:



Also appealing:



Model Selection

• We wish to choose a 
model to fit to data
– e.g. is it a line or a circle?
– e.g is this a perspective or 

orthographic camera?
– e.g. is there an aeroplane

there or is it noise?

• Issue
– In general, models with 

more parameters will fit a 
dataset better, but are 
poorer at prediction

– This means we can’t simply 
look at the negative log-
likelihood (or fitting error)



Top is not necessarily a better
fit than bottom
(actually, almost always worse)





We can discount the fitting error with some term in the number
of parameters in the model.



Discounts

• BIC (Bayes information 
criterion)
– choose model with smallest 

value of

– N is the number of data 
points

• Minimum description 
length
– same criterion as BIC, but 

derived in a completely 
different way

−2L D;θ*( )+ p log N

• AIC (an information 
criterion)
– choose model with smallest 

value of 

– p is the number of 
parameters

−2L D;θ*( )+ 2 p



Cross-validation

• Split data set into two 
pieces, fit to one, and 
compute negative log-
likelihood on the other

• Average over multiple 
different splits

• Choose the model with the 
smallest value of this 
average

• The difference in averages 
for two different models is 
an estimate of the 
difference in KL 
divergence of the models 
from the source of the data



Fitting and Probabilistic
Segmentation

• Robust estimation
• RANSAC
• EM
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