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Tracking Applications

• Motion capture
• Recognition from motion
• Surveillance
• Targeting



Things to consider in tracking

What are the
• Real world dynamics
• Approximate / assumed model
• Observation / measurement process

This lecture focuses on models with linear dynamics 
and measurement process.



Outline

• Recursive filters
• State abstraction
• Density propagation
• Linear Dynamic models
• Kalman filter in 1-D
• Kalman filter in n-D
• Data association
• Multiple models

(next: nonlinear models: EKF, Particle Filters)



Tracking and Recursive estimation

• Real-time / interactive imperative.
• Task: At each time point, re-compute estimate of 

position or pose.
– At time n, fit model to data using time 0…n
– At time n+1, fit model to data using time 0…n+1

• Repeat batch fit every time?



Recursive estimation

• Decompose estimation problem
– part that depends on new observation
– part that can be computed from previous history

• E.g., running average:
at = α at-1 + (1-α) yt



Density propogation

• Tracking == Inference over time
• Much simplification is possible with linear 

dynamics and Gaussian probability models



Tracking

• Very general model:  
– We assume there are moving objects, which have an underlying 

state X
– There are measurements Y, some of which are functions of this 

state
– There is a clock

• at each tick, the state changes
• at each tick, we get a new observation

• Examples
– object is ball, state is 3D position+velocity, measurements are 

stereo pairs
– object is person, state is body configuration, measurements are 

frames, clock is in camera (30 fps)



Three main issues in tracking



Simplifying Assumptions



Tracking as induction

• Assume data association is done
– we’ll talk about this later; a dangerous assumption

• Do correction for the 0’th frame
• Assume we have corrected estimate for i’th frame

– show we can do prediction for i+1, correction for i+1



Base case



Induction step

Given



Induction step



Linear dynamic models

• A linear dynamic model has the form

• This is much, much more general than it looks, and extremely 
powerful

xi = N Di−1xi−1;Σdi( )
yi = N Mixi ;Σmi( )



xi = N Di−1xi−1;Σdi( )Observability
yi = N Mixi ;Σmi( )

• For the measurement model, we may not need to 
observe the whole state of the object
– e.g. a point moving in 3D, at the 3k’th tick we see x, 

3k+1’th tick we see y, 3k+2’th tick we see z
– in this case, we can still make decent estimates of all 

three coordinates at each tick.

• This property is called Observability



xi = N Di−1xi−1;Σdi( )Examples
yi = N Mixi ;Σmi( )

• Random walk
• Points moving with constant velocity
• Points moving with constant acceleration
• Periodic motion



xi = N Di−1xi−1;Σdi( )Examples

• Drifting points
– assume that the new position of the point is the old one, 

plus noise
D = Id

yi = N Mixi ;Σmi( )

cic.nist.gov/lipman/sciviz/images/random3.gif 
http://www.grunch.net/synergetics/images/random
3.jpg



Constant velocity           
yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above

ui = ui−1 + ∆tvi−1 + ε i

vi = vi−1 + ς i
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xi = N Di−1xi−1;Σdi( )Constant acceleration

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above

ui = ui−1 + ∆tvi−1 + ε i

vi = vi−1 + ∆tai−1 +ς i

ai = ai−1 + ξi
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yi = N Mixi ;Σmi( )
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xi = N Di−1xi−1;Σdi( )

Assume we have a point, moving on a line with a 
periodic movement defined with a differential eq: 

can be defined as 

with state defined as stacked position and velocity 
u=(p, v)

yi = N Mixi ;Σmi( )
Periodic motion



xi = N Di−1xi−1;Σdi( )Periodic motion
yi = N Mixi ;Σmi( )

Take discrete approximation….(e.g., forward Euler 
integration with ∆t stepsize.)



Higher order models

• Independence assumption

• Velocity and/or acceleration augmented position
• Constant velocity model equivalent to

– velocity ==
– acceleration ==
– could also use         , etc. 



The Kalman Filter

• Key ideas: 
– Linear models interact uniquely well with Gaussian 

noise - make the prior Gaussian, everything else 
Gaussian and the calculations are easy

– Gaussians are really easy to represent --- once you 
know the mean and covariance, you’re done



Recall the three main issues in tracking

(Ignore data association for now)



The Kalman Filter

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html]



The Kalman Filter in 1D

• Dynamic Model

• Notation

Predicted mean

Corrected mean



The Kalman Filter



Prediction for 1D Kalman filter

• The new state is obtained by
– multiplying old state by known constant
– adding zero-mean noise

• Therefore, predicted mean for new state is
– constant times mean for old state

• Old variance is normal random variable
– variance is multiplied by square of constant
– and variance of noise is added.





The Kalman Filter



?…



Correction for 1D Kalman filter



Correction for 1D Kalman filter

Notice:
– if measurement noise is small, 
we rely mainly on the measurement,
– if it’s large, mainly on the 
prediction
– σ does not depend on y
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Smoothing

• Idea
– We don’t have the best estimate of state - what about 

the future?
– Run two filters, one moving forward, the other 

backward in time.
– Now combine state estimates

• The crucial point here is that we can obtain a smoothed 
estimate by viewing the backward filter’s prediction as yet 
another measurement for the forward filter

– so we’ve already done the equations









n-D

Generalization to n-D is straightforward but more complex.



n-D

Generalization to n-D is straightforward but more complex.



n-D Prediction

Generalization to n-D is straightforward but more complex.

Prediction:
• Multiply estimate at prior time with forward model:

• Propagate covariance through model and add new noise:



n-D Correction

Generalization to n-D is straightforward but more complex.

Correction:
• Update a priori estimate with measurement to form a 

posteriori



n-D correction

Find linear filter on innovations 

which minimizes a posteriori error covariance:

K is the Kalman Gain matrix.  A solution is

( ) ( )
 −− ++ xxxxE

T



Kalman Gain Matrix

As measurement becomes more reliable, K weights residual 
more heavily, 

As prior covariance approaches 0, measurements are ignored:
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox
• MSE of filtered estimate is 4.9; of smoothed estimate. 3.2. 
• Not only is the smoothed estimate better, but we know that it is better, 

as illustrated by the smaller uncertainty ellipses
• Note how the smoothed ellipses are larger at the ends, because these 

points have seen less data. 
• Also, note how rapidly the filtered ellipses reach their steady-state 

(“Ricatti”) values. 
[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]



Data Association

In real world yi have clutter as well as data…

E.g., match radar returns to set of aircraft 
trajectories.



Data Association

Approaches:
• Nearest neighbours

– choose the measurement with highest probability given 
predicted state

– popular, but can lead to catastrophe

• Probabilistic Data Association
– combine measurements, weighting by probability given 

predicted state
– gate using predicted state













Online demo

[figure from Welsh and Bishop 2001]



Online demo

The Kalman Filter Learning Tool tool simulates a relatively simple 
example setup involving estimation of the water level in a tank.

Water dynamics. The user can independently choose both the actual and 
modeled dynamics of the water. The choices include no motion (the 
default), filling, sloshing, or both filling and sloshing.

Measurement model. The user can also choose the method of 
measurement. The measurement model choices include two options 
that are commonly used (for example) in toilet tanks: a vertical level 
(linear) float-type sensor, or an angular (non-linear) float-type sensor. 
A diagram depicting the two case is shown below. The user is also 
allowed to increase or decrease (by a factor of 10) the magnitude of the 
random linear or angular measurement noise.



Online demo

[figure from http://www.cs.unc.edu/~welch/kalman/kftool/index.html]



Online demo

http://www.cs.unc.edu/~welch/kalman/kftool/KalmanFilterApplet.html



Abrupt changes

What if environment is sometimes unpredictable?

Do people move with constant velocity?

Test several models of assumed dynamics, use the 
best.



Multiple model filters

Test several models of assumed dynamics

[figure from Welsh and Bishop 2001]



MM estimate

[figure from Welsh and Bishop 2001]



P likelihood

[figure from Welsh and Bishop 2001]



No lag

[figure from Welsh and Bishop 2001]



Smooth when still

[figure from Welsh and Bishop 2001]



Resources

• Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

• Kevin Murphy’s Matlab toolbox:
http://www.ai.mit.edu/~murphyk/Software/Kalman/k

alman.html



Outline

• Recursive filters
• State abstraction
• Density propagation
• Linear Dynamic models
• Kalman filter in 1-D
• Kalman filter in n-D
• Data association
• Multiple models

(next: nonlinear models: EKF, Particle Filters)
[Figures from F&P unless otherwise attributed]
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