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Model-based Vision

T. Darrell



Endgame

Guest Lecture: Prof. Stan Sclaroff

Today

Last Lecture; Vision and Graphics…

3-5 slides to Louis
Short narration in-class

…

• PS3 back today; mean = 82, std.dev. = 13
• Next week we’ll distribute extra credit problem(s)



Model-based Vision

• Hypothesize and test
• Interpretation Trees
• Alignment
• Pose Clustering
• Invariances
• Geometric Hashing
• Medical Imaging Application



Approach

• Given
– CAD Models (with features)
– Detected features in an image

• Hypothesize and test
– Guess 
– Render 
– Compare



Recognition by Hypothesize and Test

• General idea
– Hypothesize object identity and correspondence
– Recover camera (widely known as backprojection)
– Render object in camera
– Compare to image

• Issues
– where  do the hypotheses come from?
– How do we compare to image (verification)?



Recognition by Hypothesize and Test

• Simplest approach
– Construct a correspondence for all object features to 

every correctly sized subset of image points
• These are the hypotheses

– Expensive search, which is also redundant.



What are the features?

• They have to project like points
– Lines
– Conics
– Other fitted curves
– Regions (particularly the center of a region, etc.)



How to generate hypotheses?

• Brute force
– L objects with N features
– M features in image
– O(LMN) !

• Add geometric constraints to prune search, leading 
to interpretation tree search

• Try subsets of features (frame groups)… 



Interpretation Trees

• Tree of possible model-image feature assignments
• Depth-first search
• Prune when unary (binary, …) constraint violated

– length
– area
– orientation

• “Wild cards” handle spurious image features
(a,1)

(b,2)

…

…



Interpretation Trees

[ A.M. Wallace. 1988. ]



Interpretation Trees Demo

• http://vision.dai.ed.ac.uk/demos/itreal/



Configuration Search

• Alignment
– Model-based RANSAC

• Pose clustering
– Model-based Hough

These methods search over pose…
another approach computes a measure invariant to 

configuration change.



Pose consistency / Alignment

• Correspondences between image features and 
model features are not independent.

• A small number of correspondences yields a 
camera --- the others must be consistent with this.



Pose consistency / Alignment

• Strategy:
– Generate hypotheses using small numbers of 

correspondences (e.g. triples of points for a calibrated 
perspective camera, etc., etc.)

– Backproject and verify

• Notice that the main issue here is camera 
calibration

• Appropriate groups are “frame groups”



Pose consistency / Alignment

• Given known camera type in some unknown 
configuration (pose)

• Hypothesize configuration from set of initial 
features

• Frame group -- set of sufficient correspondences 
to estimate configuration, e.g.,
– 3 points
– 3 directions from 1 point

• Backproject 
• Test



Alignment





Pose clustering

• Voting on Pose
• Each model leads to many correct sets of 

correspondences, each of which has the same 
pose
– Vote on pose, in an accumulator array
– This is a hough transform, with all it’s issues.



Pose
Clustering





Confidence weighting in Pose clustering

• See where model frame group is reliable 
(visible!)

• Down-weight / discount votes from frame groups 
at poses where that frame group is unreliable…











Invariant recognition

• Affine invariants
– Linear combinations of models
– Geometric hashing

• Projective invariants
– Determinant ratio

• Curve invariants



Invariance

• There are geometric properties that are invariant to 
camera transformations

• Easiest case:  view a plane object in scaled 
orthography.

• Assume we have three base points P_i on the 
object
– then any other point on the object can be written as

Pk = P1 + µka P2 − P1( )+ µkb P3 − P1( )



Invariance

• Now image points are obtained by multiplying 
by a plane affine transformation, so

pk = APk

= A P1 + µka P2 − P1( )+ µkb P3 − P1( )( )
= p1 + µka p2 − p1( )+ µkb p3 − p1( )



Invariance
Pk = P1 + µka P2 − P1( )+ µkb P3 − P1( )

pk = APk

= A P1 + µka P2 − P1( )+ µkb P3 − P1( )( )
= p1 + µka p2 − p1( )+ µkb p3 − p1( )

• This means that, if I know the base points in the 
image, I can read off the µ values for the object
– they’re the same in object and in image --- invariant

• Suggests a strategy rather like the Hough 
transform
– search correspondences, form µ’s and vote



Geometric hashing

• Vote on identity and correspondence using 
invariants
– Take hypotheses with large enough votes

• Fill up a table, indexed by µ’s, with 
– the base points and fourth point that yield those µ’s
– the object identity





Indexing with invariants

• Voting in geometric hashing is superfluous - we 
could just go ahead and verify if we get a hit.

• It would be nice to have invariants for 
perspective cameras

• Groups of features with identity information 
invariant to pose – invariant bearing groups

• Easy for perspective views of plane objects ---
we write object points in homogenous 
coordinates, then the object coordinates are 
multiplied by a 3x3 matrix with non-zero det.



det pi pj pk[ ]( )det pi pl pm[ ]( )
det pi pj pl[ ]( )det pi pk pm[ ]( )

=
det MPiMPj MPk[ ]( )det MPiMPl MPm[ ]( )
det MPiMPjMPl[ ]( )det PiMPk MPm[ ]( )

=
det M PiPjPk[ ]( )det M PiPlPm[ ]( )
det M PiPjPl[ ]( )det M PiPk Pm[ ]( )

=
det M( )2( )
det M( )2( )

det PiPjPk[ ]( )det PiPlPm[ ]( )
det PiPjPl[ ]( )det PiPkPm[ ]( )

=
det PiPjPk[ ]( )det PiPlPm[ ]( )
det PiPjPl[ ]( )det PiPk Pm[ ]( )

Five points under projective transformations; the text gives
several other constructions



Tangent invariance

• Incidence is preserved despite transformation

• Transform four points above to unit square: 
measurements in this canonical frame will be 
invariant to pose.

M-curve construction







Verification

• Edge score
– are there image edges near predicted object edges?
– very unreliable; in texture, answer is usually yes

• Oriented edge score
– are there image edges near predicted object edges with 

the right orientation?
– better, but still hard to do well (see next slide)

• No-one’s used texture
– e.g. does the spanner have the same texture as the 

wood?
• model selection problem

– more on these later; no-ones seen verification this way, 
though





Application: Surgery

• To minimize damage by operation planning
• To reduce number of operations by planning 

surgery 
• To remove only affected tissue
• Problem

– ensure that the model with the operations planned on it 
and the information about the affected tissue lines up 
with the patient

– display model information supervised on view of 
patient

– Big Issue: coordinate alignment, as above



CTIMRI

NMI

USI



[ Eric Grimson; http://www.ai.mit.edu/people/welg/welg.html]



[ Eric Grimson; http://www.ai.mit.edu/people/welg/welg.html]



[ Eric Grimson; http://www.ai.mit.edu/people/welg/welg.html]



[ Eric Grimson; http://www.ai.mit.edu/people/welg/welg.html]



[ Eric Grimson; http://www.ai.mit.edu/people/welg/welg.html]



Model-based Vision

• Hypothesize and test
• Interpretation Trees
• Alignment
• Pose Clustering
• Invariances
• Geometric Hashing
• Medical Imaging Application

[Figures from Forsythe & Ponce unless otherwise attributed]
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