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Query Formulation Methods

QBE: Query by Example

— Positive and negative examples
Text description

Query by sketch
Cluster-based retrieval
Relevance feedback



Query by Sketch
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Example taken from Jacobs, Finkelstein, & Salesin
Fast Multi-Resolution Image Querying, SIGGRAPH 1995



Relevance Feedback
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Example taken from Cox, Miller, Minka, Papathomas, and Yianilos, “The Bayesian Image
Retrieval System, PicHunter: Theory, Implementation, and Psychophysical Experiments, ”
IEEE T-IP, 2000.



Application Areas

Images and video on the web

Igrep: Images and video 1n email and local files
Individual collections of video or family photos
Military intelligence, homeland security
Archives: stock photos, stock film/video footage
Access to museum collections

Trademark and copyright infringement

Medical information systems



CBIVR: Some Key Issues

Searching a large database for images or
video clips that match a query:

— What kinds of databases?
— What kinds of queries?

— What constitutes a match?
— How do we make such searches efficient?

— How to quantitatively evaluate performance?



CBIVR: Some Key Issues

Searching a large database for images or video
clips that match a query:

— What kinds of databases?
— What kinds of queries?

— What constitutes a match?
— How to make such searches efficient?

— How to quantitatively evaluate performance?



Quantitative Evaluation of
CBIVR Performance



A Standard Information Retrieval

Evaluation Measure

For a given query g:
R = set of relevant documents in answer set A
R = set of relevant documents for ¢

R,|

Recall =— Precision =—
R 4

Ideally these values are close to one.



A Standard Information Retrieval

Evaluation Measure

For a given query g:
R, = set of relevant documents in answer set A

R = set of relevant documents for ¢

Recall = u Precision =—
R 4

Problem: What is relevant?
The relevance judgments of competent human
informants can differ.




Average Precision vs. Recall
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Generally, as the recall level rises, the level of precision falls.
Which system 1s better?



Desirable Precision vs. Recall
1s Application-Dependent!

Images and video on the web

Igrep: Images and video 1n email and local files
Individual collections of video or family photos
Military intelligence, homeland security
Archives: stock photos, stock film/video footage
Access to museum collections

Trademark and copyright infringement

Medical information systems



Example Application:

CBIVR for the WWW



CBIVR for the WWW?

Very large, unstructured database

Diverse content

No single standard image nor video format
No standard 1llumination

Images/video can be altered in Photoshop, etc.

Lossy compression, color quantization, scanned

What are the precision and recall
requirements?
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Google SafeSearch Filtering

;._;I[ |£| Preferences

|

Interface Language

Search Language

\

SafeSearch Filtering

Global Preferences (changes apply to all Google semvices)

Display Google tips and messages in: IE”QHSh j
If you do not find your native language in the pulldown above, you can
help Google create it through our GGoogle in Your Language program.

* Search for pages written in any language (Recommended).

" Search only for pages written in these language(s):

™ Arahic I~ English I Indonesian ™ Rormanian
I~ Bulgarian I™ Estonian I Italian ™ Russian
I~ Catalan I~ Finnish ™ Japanese ™ Serbian
™ Chinese (Simplified) I™ French ™ Korean ™ Slovak
I~ Chinese (Traditional) I~ German I~ Latvian I~ Slovenian
I~ Croatian ™ Greek I Lithuanian ™ Spanish
I Czech I~ Hebrew I~ Morwegian ™ Swedish
I~ Danish I~ Hungarian I~ Palish I~ Turkish
I~ Dutch I Izelandic ™ Portuguese

Google's SafeSearch blocks web pages containing explicit sexual cantent fram appearing in
search results.

@ Use strict filtering (Filter both explicit text and explicit images)
" Use moderate filtering (Filter explicit images anly - default behaviar)
" Da not filter my search results.

I

nt: Done [0.35 secs)

=S | | &




Finding Naked People
[Fleck,Forsyth, and Bregler 1996]

e Convert RGB color to HIS color
e Use the intensity component to compute a texture map
texture = med2 ( | I - med1(I) | )  median filters of
: . : radii 4 and 6
o If a pixel falls into either of the following ranges,

it's a potential skin pixel

texture < 5, 110 < hue < 150, 20 < saturation < 60
texture < 5, 130 < hue < 170, 30 < saturation < 130

Look for LARGE areas that satisfy this to identify pornography.
Use simple grouping rules for limbs/trunk/legs (see their paper).



Image Representations for CBIR



Image Representations

There are roughly three levels of image

representation used

for CBIR:

1. Iconic — exact pixel values

2. Compositional — overall image appearance

3. Objects — things depicted in the 1image, their
properties, and their relationships



Iconic Matching

Example applications:
— Copyright and trademark protection
— Duplicate removal
— Linking images used in evidence, for example child
pornography
Problems 1n finding “exact” matches:
— Lossy compression, image scanning
— Color space conversion

— Photoshop-style transforms: blur, scale, rotate, warp,
crop, cut, etc.



Iconic Matching

painted scanned

From Jacobs, Finkelstein, & Salesin
Fast Multi-Resolution Image Querying, SIGGRAPH 1995



Summary Representations of a

Whole Picture: Color Histograms
[Swain and Ballard, IJCV 1991]
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Color Histograms

Off-line, for each image
create histogram with a bin for each color
initialize each bin counter = 0
for each pixel in image:

iIncrement bin counter corresponding to pixel
color

end

On-line, use histograms 1n 1mage similarity measure:
Euclidean, dot product, histogram intersection, etc.




QBIC’s Histogram Similarity

The QBIC color histogram distance is:

dw(L,Q) = ((D) - h(Q)) A (h(I) - h(Q))

e h(I) is a K-bin histogram of a database image
e h(Q) is a K-bin histogram of the query image

e A is a K x K similarity matrix



Similarity Matrix: A
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Images Classified as Sunsets
using Overall Color Histograms

2870592

287040 28?048 287057

345002 345005 345011 345014



Histograms of Partitioned Image

Divide 1image up into rectangles.
Compute separate histogram for each partition.

Rectangles can overlap.



Retrieval by “color layout”

in IBM’s QBIC
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Indexing with Color Correlograms
[Zabih, et al.]

Problem: Pictures taken from slightly different view
positions can look substantially different with a
color histogram similarity measure.

Proposed solution: Compute color co-occurance
statistics [Haralick 1979].



Color Correlogram
[Zabih, et al.]

For each 1image, estimate the probability that a pixel
of some color lies within a particular distance of pixel
of another color.

X




Estimating Color Correlogram

Consider set of distances of interest /d/={1,2,...,d}
Measure pixel distance with L_ norm.
Consider m possible colors c;e{c,, c,,..., ¢, }.

Offline, for each image:
Construct a correlogram that has mx mx d bins, initialize=0.
For each pixel p; in the image, find it's color c;
for each distance ke&{1,2,...,d}
for each pixel at distance & from p,
increment bin (i,7,k)
end
end
end
Normalize correlogram by a scale factor (see Zabih, et al.)




Similarity Measure

Given correlograms of query and target images,
v(Q) and y(7), define similarity:

0-T1,, & D 1ri (@ -y (D)
i,je[m],ke[d]
Improved measure includes normalization:
\ (72@ -8 M)
0-T |7/,d1 = Z (k) (k)
i, jelmkeld]| 1"‘7 (Q) T7 e (T)/




Earth Mover’s Distance (EMD)

[Rubner, Guibas, & Tomas1 1998]

For each image, compute color signature:

o

T —

e

Define distance between two color signatures to be the
minimum amount of “work’ needed to transform one

signature 1nto another.

N — e i




Computing the Image
Color Signature for EMD

* Transform pixel colors into CIE-LAB color space.
* Each pixel of the image constitutes a point 1n this color space.
 Cluster the pixels in color space, k-d tree based algorithm.

Clusters constrained to not exceed 30 units in L,a,b axes.
* Find centroids of each cluster.
* Each cluster contributes a pair (p,w,) to the signature

p 1s the average color.

w, 1s the fraction of pixels in that cluster.

Typically there are 8 to 12 clusters.



EMD of Color Signatures

The work needed to move a point, or a fraction of a point, to a
new location 1s the portion of weight being moved, multiplied
by the Euclidean distance between the old and new location.

Allow the weight of a single source to be partitioned among
several destination points, and vice versa.

Can be solved with linear programming (see Rubner, et al.).



Multiscale EMD Formulation

- EMD(x, (Y. eul)

M ABAASTVE
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Figure 1. Scale Estimation. (a) pattern, image, and pattern scaled by the scale estimate <. (b).(d)
pattern, image signatures. (c) pattern signature with weights scaled by &". (&) EMD(x, (Y, cu)) v. ¢



Retrieval Example

20% 40% don't care
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Example EMD Retrieval Results
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Figure 3 The top ten lmages for a query that asked for 2090 blue and 80% don™t care. (a) Traditional
cisplav, (b1 MDS man.



Visualizing Dataset with EMD and
Multidimensional Scaling




Orientation Histograms

Determine local orientation and magnitude at each pixel.

Example images taken from Freeman & Adelson, “The Design and Use of

Steerable Filters,” IEEE T-PAMI, 1991.



Multiscale Orientation Histograms

Off-line, for each image:

Compute steerable pyramid
For each level in the pyramid
For each pixel
Estimate local orientation and magnitude
If magnitude > threshold
increment appropriate histogram bin
End
End
Circular blur histogram
End




Fast Multi-Resolution Image Querying
[Jacobs, Finkelstein, & Salesin SIGGRAPH 1995]

Off-line:

For each image
— Compute Haar wavelet decomposition

— Store truncated coefficients (top 60 of largest
magnitude in each color channel)

— Quantize remaining coefficients to —1 or 1
(for negative or positive values)

— Store the coefficients as the image signature
end




Similarity Measure

Let O and T represent just a single channel of the wavelet
decomposition of the query and target images.

Define the similarity measure:

||QT||_W00|Q[OO 00|+Z IQlJ /[J]I

overall average intensity truncated coefficients

1O, T [l= wy, | 910,0] - 00|+Z (0L, j1# T, j1)

Only consider terms where query has non-zero wavelet coefficients.




Minka and Picard here?



Image Representations

There are roughly three levels of image

representation used

for CBIR:

1. Iconic — exact pixel values

2. Compositional — overall image appearance

=P 3. Objects — things depicted in the image, their
properties, and their relationships



Shape-based retrieval of images

Find more shapes like this




Shape Properties: Projection Matching
[VisualSeek, Smith&Chang 1996]

Feature Vector
(OI4I1I3I2IOIOI4I3I2I1IO)

oONNWH PNO

043 210

In projection matching, the horizontal and vertical
projections form a histogram.

What are the weaknesses of this method? strengths?



Global Shape Properties:
Tangent-Angle Histograms

135

0 30 45 135

Is this feature invariant to starting point?




Del Bimbo Elastic Shape Matching
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Shape-based Search 1n Photobook

[Pentland, Picard, & Sclaroff 1994]
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Coordinate in Deformable Prototype Space
[Sclaroff 1995]
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Problems 1n shape-based indexing

Many existing approaches assume

e segmentation 1s given, Or...

* human operator circles object of interest, or...
» lack of clutter and shadows, or...

e objects are rigid, or...

 planar (2-D) shape models, or...

e models are known 1n advance



Deformable template-based region grouping
[Sclaroff&Liu, 2001]

2D deformable template is
trained on training data for
object class

Input image Over-segmentation Model-guided Model descriptions
merging



Image Partitioning via
Optimization

8




Model-based Region Splitting

* Detect candidates for splitting based on model
fitting cost value and a specified threshold.

* Determine candidate cuts based on model and
curvature extrema of the region group boundary.




Index trees: basic 1dea

e Oft-line:
— Generate deformed instances of the object class
— Compute their shape feature vectors
— Create hierarchical indexing structure

e On-line:

— Compute the shape feature vector for a
potential region group

— Fetch the most similar model instance via
comparing the shape feature vectors



Shape Index Trees

Candidate region group




Shape-Population Retrieval
[L1iu and Sclaroff 2000]
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Blobworld

[Belongie, et al. 1998]

e Images are segmented on color plus texture
e User selects a region of the query image

e System returns images with similar regions
e Works really well for tigers and zebras

Demo: http://elib.cs.berkeley.edu/photos/blobworld



Blobworld Region Segmentation

« 8D descriptor computed for each pixel:
— color in L*a*b* space
— 3 texture features at selected scale: anisotropy,
polarity, and contrast
— pixel position (X,y)
* Represent each image as mixture of Gaussians,
estimated via EM algorithm.

« Resulting pixel memberships form a segmentation
of the 1mage (after connected components
analysis, etc.)



Example Blobworld Segmentation




Example Blobworld Queries
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The NeTra System

[Ma and Manjunath, 1999]
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" Demo: http://vision.ece.ucsb.edu/netra/Netra.html




The NeTra System Overview
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Image Features

« Use vector quantization (VQ) to build code book
for RGB color, given training set of 1mages
chosen from database.

* Fourier descriptor of region contour is used to
represent shape. Similarity measure: Euclidean.

e Gabor decomposition for texture at 4 scales, and 6
orientations. Store means and standard deviations,
in 48-D feature vector. Similarity measure:
Euclidean.



Example Se

Taken from Ma & Manjunath, “NeTra: A toolbox for navigating large image
databases,” Multimedia Systems, 1999.



NeTra Indexing/Retrieval

e Color, texture, and shape are stored in separate
index structures.

» Spatial location/size of regions represented by
centroid and minimum bounding rectangle.

* Use quad-tree and/or R-trees to organize index for
efficient queries.



Spatial Relationships

Example queries:
— Find all images where A 1s within 50 pixels of B.
— Find all images where A appears to the right of B.
— Find all images in where apples are on tables.
Appropriate indexing structures:
— Quad-trees
— R-trees, R*-trees
— K-d trees
— etc.



Quad-tree

Xy XX X
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Find all images where the centroid of A i1s within 50 pixels of B.



Hierarchical Minimum Bounding Rectangles

Find all images where A is within 50 pixels of B.



Region Relation Graph

adjacent

abstract regions



Eigenfaces in Photobook
[Pentland, Picard, Sclaroff 1995]
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Object Detection:

D OWN =

. convert to gray scale

. hormalize for lighting*
. histogram equalization
. apply neural net(s)

trained on 16K images

Rowley’s Face Finder




Name-It [Satoh, Nakamura, Kanade

Video
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Face Tracking and Frontal View
Extraction

start end trontal




OCR for Video Captions

Name

TOHN MAJOR

Title

Figure 9: Typical Video Caption



Content-based Video Retrieval



VideoQ: Query by Sketch

[S.F. Chang, et al.]

Demo: http://www.ctr.columbia.edu/videoq/



Shot Boundary Detection Methods

Assumption: shot boundaries are discontinuities in space-time.

— Compare color and orientation histograms in adjacent
frames

— Motion (flow) analysis

— Multimodal approach: video + audio track
Other applications:

Keyframe extraction. Intelligent fast forward.

Problems:

— Transitions like wipe, fade, cross-dissolve

— Camera motions: pan, zoom, etc.

— Moving objects occupy large percentage of image



Video Skimming (CMU Informedia)

Scene Changes

Camera Motion
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static

Object Detection
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Event Detection, Indexing and Retrieval

Assign semantic labels to significant events 1n video:
— Explosion, car crash, door slam (audio/video track)
— Marilyn Monroe enters scene
— Pele scores goal
— Jay Leno tells joke and then delivers punch-line
— Two people exchange a briefcase 1n park
— etc.

There are events that are “latent” in the video database that
are not of interest now, but may become interesting later.



Relevance Feedback



Relevance Feedback

In real interactive CBIR systems, the user should be
allowed to interact with the system to “refine” the
results of a query until he/she is satisfied.

Relevance feedback work has been done by a
number of research groups, e.g.:

o T
o T
o T
o T

ne Photobook Project (Media Lab, MIT)
e Leiden Portrait Retrieval Project
ne ImageRover Project at Boston U.

ne MARS Project (Tom Huang’s group at Illinois)

e PicHunter (Cox, et al. at NEC)




Information Retrieval Model

e An IR model consists of:
— a document model
— a query model

— a model for computing similarity between
documents and the queries

e Term (keyword) weighting
e Relevance Feedback



Term weighting in Info Retrieval

Term weight

— assigning different weights for different keyword (terms)
according their relative importance to the document

definew, to be the weight for term 7, ,k=1,2,....N, in the
document i

Target document i can be represented as a weight vector in
the term space

I = [Wil;Wz‘Z;“';WiN]

l



Term weighting

e The query Q also i1s a weight vector in the term space
Q [qu ” W 9 WqN]

e The similarity between T and Q

Sim(T.0) = — %



Using Relevance Feedback

— The CBIR system should automatically adjust the
weights that were given by the user for the relevance of
previously retrieved documents

— Most systems use a statistical method for adjusting the
weights.

What are the problems in applying the IR relevance
feedback paradigm in image and video retrieval?



Clustering Images [Barnard&Forsyth 2001]

Cluster on text only. Cluster on image features only.



Clustering Images

Two clusters obtained using both text and image segment features.



Image/Video Databases

Since databases can be large, computational
complexity 1s very important

Spatial data structures can help
Hierarchical data structures, clustering
Multiple metric strategies

Embeddings
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