
6.801/6.866 Machine Vision 
 

Problem set 3 
Assigned: 10/24/02 

Due: 11/05/02 at 2:30pm 
 
Problem 1    Lucas-Kanade tracker (Matlab) 

Lucas & Kanade’s optic flow technique proposes to solve the brightness constant 
constraint equation (BCCE) by assuming constant flow over a patch: 
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a) Implement a single-iteration Lucas-Kanade tracker. Your function should have 
the following syntax: 
function [dx,dy] = lucaskanade(I1, I2, xl, yt, xr, yb, wsize)

where I1 and I2 are the images, (xl,yt) and (xr,yb) are the top-left and bottom-
right corners of the region where you want the optical flow computed, and wsize is 
the size of the squared image patch used to solve equation (1). 

Test your implementation using LK-0001.bmp and LK-0002.bmp with different 
window sizes: 5, 9, 13 and 17. 
- For each window size, plot the optical flow for the region 

(xl,yt);(xr,yb)=(80,170);(150,220) using the Matlab function quiver.   
- Is the estimated optical flow constant over the whole region?  Should the true 

optical flow differ from your estimate?  Why or why not? 
- Does the window size change the estimated optical flow?  Why or why not? 
You should submit your file lucaskanade_yourlastname.m and print a copy 
of your code. 

Hint: To compute the image gradient, you should first blur image I1 and then use 
the Matlab function gradient.  The temporal gradient can be approximated by the 
difference between blurred versions of I1 and I2. 
b) Derive the Lucas-Kanade solution (Eq. 1) from the BCCE by minimizing the 

following objective function: 
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 Hint: Rewrite the objective function as the least-squares solution of a linear 
system of equations in matrix form. 

 
Problem 2     Spatially Variant Filtering (Matlab) 
The next two problems use pyramid image processing.  Download the matlabPyrTools 
from http://www.cns.nyu.edu/~eero/software.html. When forming pyramid 
decompositions for these problems, you may always use the default decomposition filters. 
For both problems, you should submit your Matlab code and include a printout. 

Subjectively, our visual world appears to us to be high resolution everywhere.  
However, we have much higher spatial resolution in the center of our field of view 
than in the periphery.  In this problem, we will synthesize an image approximating 
our visual resolution as a function of eccentricity.  

http://www.cns.nyu.edu/~eero/software.html


The figure shows a plot of the minimum 
angle resolvable as a function of the visual 
eccentricity.  The visual eccentricity is 
measured in degrees away from the center of 
fixation.  (From Rodieck, "The First Steps in 
Seeing", Sinauer, 1998).  
 
Approximate acuity, a, in minutes of arc (60 
minutes to a degree) as a function of 
eccentricity, e, in degrees, by the expression,  
                          a = 0.23 e + 0.7 
We will create an image with the effective 
spacing of the pixels equal to the angular size 
of the acuity limit.  In the figure, that limit is 
defined as the white space between two ends 
of a circle.  Adjacent black, white, black 
pixels could approximately represent that 
circle opening if the pixel spacing were equal 
to the angular size of the acuity limit. 
 
Assume that the image (or monitor) is square, 
and that you view it from a distance of three 
times the length of one side of the image. 
Where convenient, you may assume angles 
are small enough so that θθ ≈)tan( . 

a) How many evenly spaced pixels per 
side does the image need to have in 
order that the  highest resolution part 
of the image has one pixel per length 
of finest acuity?  Assume that some 
image point lies at zero eccentricity. 

b) Let the upper left corner of the image 
be (0,0), and the right and bottom 
edges of the picture be at a distance 1 
from this corner. Assume that the 
upper left corner is the center of 
fixation. What effective pixel spacing, as a function of these units, causes the 
pixel spacing to equal the spatial acuity for the corresponding eccentricity? 

c) We can approximate images of this resolution by using a Gaussian pyramid, 
which generates images at different numbers of pixel samples, dividing the 
number of pixels by two at each level of the Gaussian pyramid.  Start from an 
image at the full resolution of part (a). Each pyramid level increases the effective 
size of its pixels by a factor of two in each dimension. As a function of the 
coordinate system used in (b), by how many factors of two should the resolution 
of the original image be reduced as a function of position in the image in order to 



simulate the human visual acuity, assuming the viewer stares at the upper left 
corner of the image? 

d) The expression in (c) involves fractional pyramid levels.  We can visually 
approximate images at those intermediate resolution levels by linearly 
interpolating between our Gaussian pyramid levels. On the class web site is a 
2000x2000 image, which should be more than enough pixels for you.  Crop that 
image to the desired resolution such that the upper left corner will be at the 
maximum visual acuity, when viewed from 3 picture lengths away.  Use the 
Gaussian pyramid to create an image that simulates the fall-off in visual acuity, 
assume the fixation point is at the upper left corner. At any given pixel, determine 
the coefficients for interpolating between images by linearly interpolating the 
corresponding pixel dimensions. 
 
Hint: You will want to use the upBlur function to transform the Gaussian pyramid 
levels to all have the same number of pixels.  Assume that a pyramid level after 
upBlur has effectively the same number of pixels (in terms of picture content) as 
the original pyramid band before the upBlur operation.  That is a reasonable 
approximation (take 6.341 for the details that we're glossing over here). 

 
Problem 3    Noise Removal (Matlab) 
We study noise removal using a wavelet/QMF pyramid. 

a) Download the three "training set" images from the web site. Convert each to a 
QMF pyramid.  For the subband selecting vertical oriented structure, at the second 
highest resolution level, plot the histogram of the coefficient values, for each of 
the 3 training set images. Do these images share the subband histograms 
described in class? 

b) Add independent Gaussian random noise to each pixel of each of the training 
images (mean zero, standard deviation 10).  Reform the QMF pyramids, and plot 
the histograms for the same subbands used in (a). Discuss any changes. 

c) For each image, make a scatter plot plotting noisy versus clean pixel values.  
Make similar scatter plots of noisy versus clean subband coefficients, for the 
single subband used in part (a). Discuss how these plots show that one 
representation is better than the other for noise removal. 

 
The last two parts of this problem are optional (and potentially time-consuming).  They 
demonstrate how the statistical observations above could be transformed into an image 
denoising algorithm. 

d) Find a parametric form which estimates the clean subband coefficient value as a 
function of noisy input value.  The values of the free parameters could in general 
depend on the original image statistics, the noise level, and the pyramid band.  
The original image statistics and the noise level may be estimated from the noisy 
image.  However, for this exercise, we'll assume the fit is only a function of the 
pyramid band.  
Matlab's fminsearch function may be used to find the parameters which minimize 
the squared error from the observed relationships in the noisy and clean training 
images (such as the scatter plots of (c)). Combining the data for the 3 images, 



determine the parameters of your parametric form for each of the 3 subbands 
(vertical, horizontal, and diagonal) over the 4 finest pyramid levels. 

e) Download the noisy test image, which is made from a clean image corrupted by 
noise at the same level as (b).  Use the parametric forms from (d) to estimate a 
denoised image. 

 
Problem 4     Focus of expansion 
 Exercise 17-2 from Robot Vision (Horn). 
 
Problem 5     Center of rotation 
 Exercise 17-3 from Robot Vision (Horn). 
 
Problem 6     Stereo and Motion estimation 

a) Is the Stereo problem a special case of Motion estimation? Why or why not?  
b) The Brightness Constant Constraint Equation is a classic technique for Motion 

estimation; is it possible to use it as a closed-form, least squares solution to the 
stereo estimation problem?  Why or why not?  If yes, which technique is better?  
If no, what extensions would be needed to make BCCE work for stereo? 

 
Problem 7     Bayes’ Theorem 

Suppose we have a box containing 8 apples and 4 oranges, and we have a second box 
containing 10 apples and 2 oranges.  One of the boxes is chosen at random (with 
equal probability) and an item is selected from the box and found to be an apple. Use 
Bayes’ theorem to find the probability that the apple came from the first box. 

 
Problem 8     Minimum-risk decision criterion 

Verify that the minimum-risk decision criterion (Bishop, eq. 1.39) reduces to the 
decision rule (Bishop, eq. 1.26) for minimizing the probability of the misclassification 
when the loss matrix is given by kjkjL δ−= 1 . 
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