## Lecture 17: Recitation Problem and Solutions

December 12, 2001

1. How many possible network structures are there over three nodes?

There are 25: 1 with no arcs; 6 with one arc; 12 with two arcs; and 6 with three arcs.
2. How many parameters are there in each of the network structures given in the figure?
S1: 3; S2: 7; S3: 5; S4: 6; S5: 5; S6: 5
3. What parameter estimates would you get for the CPTs in each of the network structures given in the figure, using the data in Table 1, without the Bayesian correction?

- $\operatorname{Pr}(A)=1 / 3$
- $\operatorname{Pr}(B)=2 / 3$
- $\operatorname{Pr}(C)=2 / 3$
- $\operatorname{Pr}(B \mid A)=0$
- $\operatorname{Pr}(B \mid \neg A)=1$
- $\operatorname{Pr}(C \mid A)=0$
- $\operatorname{Pr}(C \mid \neg A)=1$
- $\operatorname{Pr}(A \mid B)=0$
- $\operatorname{Pr}(A \mid \neg B)=1$
- $\operatorname{Pr}(C \mid B)=1$
- $\operatorname{Pr}(C \mid \neg B)=0$

| A | B | C |
| :--- | :--- | :--- |
| 0 | 1 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |

Table 1: Data set

- $\operatorname{Pr}(A \mid C)=0$
- $\operatorname{Pr}(A \mid \neg C)=1$
- $\operatorname{Pr}(B \mid C)=1$
- $\operatorname{Pr}(B \mid \neg C)=0$
- $\operatorname{Pr}(C \mid A, B)=$ undefined
- $\operatorname{Pr}(C \mid A, \neg B)=0$
- $\operatorname{Pr}(C \mid \neg A, B)=1$
- $\operatorname{Pr}(C \mid \neg A, \neg B)=$ undefined
- $\operatorname{Pr}(A \mid B, C)=0$
- $\operatorname{Pr}(A \mid B, \neg C)=$ undefined
- $\operatorname{Pr}(A \mid \neg B, C)=$ undefined
- $\operatorname{Pr}(A \mid \neg B, \neg C)=1$

4. What is the log likelihood of the data given each of the models and the parameter estimates without the Bayesian correction?

S1:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M) & =2 \ln \operatorname{Pr}(\neg A, B, C)+\ln \operatorname{Pr}(A, \neg B, \neg C) \\
& =2 \ln (2 / 3 \cdot 2 / 3 \cdot 2 / 3)+\ln (1 / 3 \cdot 1 / 3 \cdot 1 / 3) \\
& =-5.73
\end{aligned}
$$

S2:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(\neg A) \operatorname{Pr}(B \mid \neg A) \operatorname{Pr}(C \mid \neg A, B)) \\
& +\ln (\operatorname{Pr}(A) \operatorname{Pr}(\neg B \mid A) \operatorname{Pr}(\neg C \mid A, \neg B)) \\
= & 2 \ln (2 / 3 \cdot 1 \cdot 1)+\ln (1 / 3 \cdot 1 \cdot 1) \\
= & -1.91
\end{aligned}
$$

S3:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(\neg A) \operatorname{Pr}(B \mid \neg A) \operatorname{Pr}(C \mid \neg A)) \\
& +\ln (\operatorname{Pr}(A) \operatorname{Pr}(\neg B \mid A) \operatorname{Pr}(\neg C \mid A)) \\
= & 2 \ln (2 / 3 \cdot 1 \cdot 1)+\ln (1 / 3 \cdot 1 \cdot 1) \\
= & -1.91
\end{aligned}
$$

S4:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(B) \operatorname{Pr}(C) \operatorname{Pr}(\neg A \mid B, C)) \\
& +\ln (\operatorname{Pr}(\neg B) \operatorname{Pr}(\neg C) \operatorname{Pr}(A \mid \neg B, \neg C)) \\
= & 2 \ln (2 / 3 \cdot 2 / 3 \cdot 1)+\ln (1 / 3 \cdot 1 / 3 \cdot 1) \\
= & -3.82
\end{aligned}
$$

S5:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(B) \operatorname{Pr}(\neg A \mid B) \operatorname{Pr}(C \mid B)) \\
& +\ln (\operatorname{Pr}(\neg B) \operatorname{Pr}(A \mid \neg B) \operatorname{Pr}(\neg C \mid \neg B)) \\
= & 2 \ln (2 / 3 \cdot 1 \cdot 1)+\ln (1 / 3 \cdot 1 \cdot 1) \\
= & -1.91
\end{aligned}
$$

S6:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(C) \operatorname{Pr}(B \mid C) \operatorname{Pr}(\neg A \mid C)) \\
& +\ln (\operatorname{Pr}(\neg C) \operatorname{Pr}(\neg B \mid \neg C) \operatorname{Pr}(A \mid \neg C)) \\
= & 2 \ln (2 / 3 \cdot 1 \cdot 1)+\ln (1 / 3 \cdot 1 \cdot 1) \\
= & -1.91
\end{aligned}
$$

5. What parameter estimates do you get with the Bayesian correction?

- $\operatorname{Pr}(A)=2 / 5$
- $\operatorname{Pr}(B)=3 / 5$
- $\operatorname{Pr}(C)=3 / 5$
- $\operatorname{Pr}(B \mid A)=1 / 3$
- $\operatorname{Pr}(B \mid \neg A)=3 / 4$
- $\operatorname{Pr}(C \mid A)=1 / 3$
- $\operatorname{Pr}(C \mid \neg A)=3 / 4$
- $\operatorname{Pr}(A \mid B)=1 / 4$
- $\operatorname{Pr}(A \mid \neg B)=2 / 3$
- $\operatorname{Pr}(C \mid B)=3 / 4$
- $\operatorname{Pr}(C \mid \neg B)=1 / 3$
- $\operatorname{Pr}(A \mid C)=1 / 4$
- $\operatorname{Pr}(A \mid \neg C)=2 / 3$
- $\operatorname{Pr}(B \mid C)=3 / 4$
- $\operatorname{Pr}(B \mid \neg C)=1 / 3$
- $\operatorname{Pr}(C \mid A, B)=1 / 2$
- $\operatorname{Pr}(C \mid A, \neg B)=1 / 3$
- $\operatorname{Pr}(C \mid \neg A, B)=3 / 4$
- $\operatorname{Pr}(C \mid \neg A, \neg B)=1 / 2$
- $\operatorname{Pr}(A \mid B, C)=1 / 4$
- $\operatorname{Pr}(A \mid B, \neg C)=1 / 2$
- $\operatorname{Pr}(A \mid \neg B, C)=1 / 2$
- $\operatorname{Pr}(A \mid \neg B, \neg C)=2 / 3$

6. What log likelihoods?

S1:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M) & =2 \ln \operatorname{Pr}(\neg A, B, C)+\ln \operatorname{Pr}(A, \neg B, \neg C) \\
& =2 \ln (3 / 5 \cdot 3 / 5 \cdot 3 / 5)+\ln (2 / 5 \cdot 2 / 5 \cdot 2 / 5) \\
& =-4.28
\end{aligned}
$$

S2:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(\neg A) \operatorname{Pr}(B \mid \neg A) \operatorname{Pr}(C \mid \neg A, B)) \\
& +\ln (\operatorname{Pr}(A) \operatorname{Pr}(\neg B \mid A) \operatorname{Pr}(\neg C \mid A, \neg B)) \\
= & 2 \ln (3 / 5 \cdot 3 / 4 \cdot 3 / 4)+\ln (2 / 5 \cdot 2 / 3 \cdot 2 / 3) \\
= & -3.90
\end{aligned}
$$

S3:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(\neg A) \operatorname{Pr}(B \mid \neg A) \operatorname{Pr}(C \mid \neg A)) \\
& +\ln (\operatorname{Pr}(A) \operatorname{Pr}(\neg B \mid A) \operatorname{Pr}(\neg C \mid A)) \\
= & 2 \ln (3 / 5 \cdot 3 / 4 \cdot 3 / 4)+\ln (2 / 5 \cdot 2 / 3 \cdot 2 / 3) \\
= & -3.90
\end{aligned}
$$

S4:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(B) \operatorname{Pr}(C) \operatorname{Pr}(\neg A \mid B, C)) \\
& +\ln (\operatorname{Pr}(\neg B) \operatorname{Pr}(\neg C) \operatorname{Pr}(A \mid \neg B, \neg C)) \\
= & 2 \ln (3 / 5 \cdot 3 / 5 \cdot 3 / 4)+\ln (2 / 5 \cdot 2 / 5 \cdot 2 / 3) \\
= & -4.86
\end{aligned}
$$

S5:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(B) \operatorname{Pr}(\neg A \mid B) \operatorname{Pr}(C \mid B)) \\
& +\ln (\operatorname{Pr}(\neg B) \operatorname{Pr}(A \mid \neg B) \operatorname{Pr}(\neg C \mid \neg B)) \\
= & 2 \ln (3 / 5 \cdot 3 / 4 \cdot 3 / 4)+\ln (2 / 5 \cdot 2 / 3 \cdot 2 / 3) \\
= & -3.90
\end{aligned}
$$

S6:

$$
\begin{aligned}
\operatorname{Pr}(D \mid M)= & 2 \ln (\operatorname{Pr}(C) \operatorname{Pr}(B \mid C) \operatorname{Pr}(\neg A \mid C)) \\
& +\ln (\operatorname{Pr}(\neg C) \operatorname{Pr}(\neg B \mid \neg C) \operatorname{Pr}(A \mid \neg C)) \\
= & 2 \ln (3 / 5 \cdot 3 / 4 \cdot 3 / 4)+\ln (2 / 5 \cdot 2 / 3 \cdot 2 / 3) \\
= & -3.90
\end{aligned}
$$

7. How many parameters are in each network? $3,7,5,5,5,5$
