Lecture 1 • 1
6.825 Techniques in Artificial Intelligence

What is Artificial Intelligence (AI)?
• Computational models of human behavior?
 • Programs that behave (externally) like humans
• Computational models of human “thought” processes?
 • Programs that operate (internally) the way humans do
• Computational systems that behave intelligently?
 • What does it mean to behave intelligently?
• Computational systems that behave rationally!
 • More on this later
• AI applications
 • Monitor trades, detect fraud, schedule shuttle loading, etc.

Lecture 1 • 2

Agents
Software that gathers information about an environment and takes actions based on that information.
• a robot
• a web shopping program
• a factory
• a traffic control system...

Lecture 1 • 3

The Agent and the Environment
How do we begin to formalize the problem of building an agent?
• Make a dichotomy between the agent and its environment
• Not everyone believes that making this dichotomy is a good idea, but we need the leverage it gives us.

Lecture 1 • 4

World Model
• A – the action space
• P – the percept space
• E – the environment: \(A \ast P \)
• Alternatively, define
 • S – internal state [may not be visible to agent]
 • Perception function: \(S \rightarrow P \)
 • World dynamics: \(S \rightarrow A \rightarrow S \)

Lecture 1 • 5

Rationality
• A rational agent takes actions it believes will achieve its goals.
 • Assume I don’t like to get wet, so I bring an umbrella. Is that rational?
 • Depends on the weather forecast and whether I’ve heard it. If I’ve heard the forecast for rain (and I believe it) then bringing the umbrella is rational.
• Rationality ≠ omniscience
 • Assume the most recent forecast is for rain but I did not listen to it and I did not bring my umbrella. Is that rational?
 • Yes, since I did not know about the recent forecast!
• Rationality ≠ success
 • Suppose the forecast is for no rain but I bring my umbrella and I use it to defend myself against an attack. Is that rational?
 • No, although successful, it was done for the wrong reason.

Lecture 1 • 6

Limited Rationality
• There is a big problem with our definition of rationality...
 • The agent might not be able to compute the best action (subject to its beliefs and goals).
 • So, we want to use limited rationality: “acting in the best way you can subject to the computational constraints that you have”
• The (limited rational) agent design problem: Find \(P \ast A \)
 • mapping of sequences of percepts to actions
 • maximizes the utility of the resulting sequence of states
 • subject to our computational constraints
Issues

- How could we possibly specify completely the domain the agent is going to work in?
 - If you expect a problem to be solved, you have to say what the problem is!
 - Specification is usually iterative: Build agent, test, modify specification
- Why isn't this "just" software engineering?
 - There is a huge gap between specification and the program
- Isn't this automatic programming?
 - It could be, but AP is so hard most people have given up
 - We're not going to construct programs automatically!
 - We're going to map classes of environments and utilities to structures of programs that solve that class of problem

Thinking

- Is all this off-line work AI? Aren't the agents supposed to think?
- Why is it ever useful to think? If you can be endowed with an optimal table of reactions/reflexes (P* A) why do you need to think?
- The table is too big! There are too many world states and too many sequences of perceptions.
- In some domains, the required reaction table can be specified compactly in a program (written by a human). These are the domains that are the target of the "Embodied AI" approach.
- In other domains, we'll take advantage of the fact that most things that could happen – don't. There's no reason to pre-compute reactions to an elephant flying in the window.

Learning

- What if you don't know much about the environment when you start or if the environment changes?
 - Learn!
 - We're sending a robot to Mars but we don't know the coefficient of friction of the dust on the Martian surface.
 - I know a lot about the world dynamics but I have to leave a free parameter representing this coefficient of friction.
- Part of the agent's job is to use sequences of percepts to estimate the missing details in the world dynamics.
- Learning is not very different from perception, they both find out about the world based on experience.
 - Perception = short time scale (where am I?)
 - Learning = long time scale (what's the coefficient of friction?)

Classes of Environments

- Accessible (vs. Inaccessible)
 - Can you see the state of the world directly?
- Deterministic (vs. Non-Deterministic)
 - Does an action map one state into a single other state?
- Static (vs. Dynamic)
 - Can the world change while you are thinking?
- Discrete (vs. Continuous)
 - Are the percepts and actions discrete (like integers) or continuous (like reals)?

Example: Backgammon (http://www.bkgm.com/rules.html)

Backgammon is a game for two players, played on a board consisting of twenty-four narrow triangles called points. The triangles alternate in color and are grouped into four quadrants of six triangles each. The quadrants are referred to as a player's home board and outer board, and the opponent's home board and outer board. The home and outer boards are separated from each other by a ridge down the center of the board called the bar.

The points are numbered for either player starting in that player's home board. The outermost point is the twenty-four point, which is also the opponent's one point. Each player has fifteen stones of his own color. The initial arrangement of stones is: two on each player's twenty-four point, five on each player's thirteen point, three on each player's eight point, and five on each player's six point.

Both players have their own pair of dice and a dice cup used for shaking. A doubling cube, with the numerals 2, 4, 8, 16, 32, and 64 on its faces, is used to keep track of the current stake of the game.

Backgammon-Playing Agent

- Action space – A
 - The backgammon moves
 - Motor voltages of the robot arm moving the stones?
 - Change the (x,y) location of stones?
 - Change which point a stone is on? ["Logical" actions]
- Percepts – P
 - The state of the board
 - Images of the board?
 - (x,y) locations of the stones?
 - Listing of stones on each point? ["Logical" percepts]
Backgammon Environment

- Accessible?
 - Yes!
- Deterministic?
 - No! Two sources of non-determinism: the dice and the opponent
- Static?
 - Yes! (unless you have a time limit)
- Discrete?
 - Yes! (if using logical actions and percepts)
 - No! (e.g. if using (x,y) positions for actions and percepts)
 - Images are discrete but so big and finely sampled that they are usefully thought of as continuous.

Example: Driving a Taxi

Recitation Exercise: Think about how you would choose –

- Action space – A?
- Percept space – P?
- Environment – E?

Structures of Agents

- Reflex ("reactive") agent
 - No memory

- What can you solve this way?
 - Accessible environments
 - Backgammon
 - Navigating down a hallway

- Agent with memory

 - State estimator/Memory
 - What we’ve chosen to remember from the history of percepts
 - Maps what you knew before, what you just perceived and what you just did, into what you know now.
 - Problem of behavior: Given my mental state, what action should I take?

Planning Agent Policy

Planning is explicitly considering future consequences of actions in order to choose the best one.

- "Let your hypotheses die in your stead." – Karl Popper