
1

Lecture 2 ñ 1

6.825 Techniques in Artificial Intelligence

Problem Solving and Search

Problem Solving
ñAgent knows world dynamics [learning]
ñWorld state is finite, small enough to enumerate

[logic]
ñWorld is deterministic [uncertainty]
ñUtility for a sequence of states is a sum over path
ñAgent knows current state [logic, uncertainty]

  Few real problems are like this, but this may be a
useful abstraction of a real problem
Relaxation of assumptions later in the course

Lecture 2 ñ 2

Example: Route Planning in a Map

  A map is a graph where nodes are cities and links
are roads.  This is an abstraction of the real world.

ñMap gives world dynamics: starting at city X on the
map and taking some road gets to you to city Y.

ñWorld (set of cities) is finite and enumerable.
ñWorld is deterministic: taking a given road from a

given city leads to only one possible destination.
ñUtility for a sequence of states is usually either total

distance traveled on the path or total time for the
path.

ñWe assume current state is known

Lecture 2 ñ 3

Formal Definition

Problem:
• Set of states:  S
• Initial state
• Operators (actions):  S Æ S
• Goal test:  S Æ { t, f }
• Path cost: (S, O)* Æ R
• Sum of costs: S c(S,O)

• Criteria for algorithms:
• Computation time/space
• Solution quality

Lecture 2 ñ 4

Route Finding

A
B

Z

O
S F

C

PR

T L M
D

118

75

71 151

140

111 70
75

120

90

99

211

97

146 138

101

Lecture 2 ñ 5

Romania Map

                                                                                             

                                           

                                                                                             

                                           

Lecture 2 ñ 6

ñPut start state in the agenda
ñLoop

ñGet a state from the agenda
–If goal, then return
–Expand state (put children in agenda)

  Which state is chosen from the agenda defines the
type of search and may have huge impact on
effectiveness.

Search



2

Lecture 2 ñ 7

Depth-First Search

ñ Treat agenda as a stack (get most recently added node)
ñ Expansion: put children at top of stack
ñ Get new nodes from top of stack

A
B

Z
O

S F

C

P

R

T L M D

A

ZA SA TA

Lecture 2 ñ 8

Avoiding Loops

• Method 1:
• Don’t add a node to the agenda if it’s already in

the agenda
• Causes problems when there are multiple paths

to a node and we want to be sure to get the
shortest

• Method 2:
• Don’t expand a node (or add it to the agenda) if

it has already been expanded.
• We’ll adopt this one for all of our searches

Lecture 2 ñ 9

Depth-First Search

ñ Treat agenda as a stack (get most recently added node)
ñ Expansion: put children at top of stack
ñ Get new nodes from top of stack

A
B

Z
O

S F

C

P

R

T L M D

A

ZA SA TA

OAZ SA TA

SAZO SA TA

FAZOS RAZOS SA TA

BAZOSF RAZOS SA TA

Result =  BAZOSF

Lecture 2 ñ 10

Properties of DFS

Let
• b = branching factor
• m = maximum depth
• d = goal depth

• O(bm) time
• O(mb) space

Sub-optimal answer:

O

A
B

Z S F

C

P

R

T L M D

Lecture 2 ñ 11

Breadth-First Search

ñ Treat agenda as a queue (get least recently added node)
ñ Expansion: put children at end of queue
ñ Get new nodes from the front of queue

A
B

Z
O

S F

C

P

R

T L M D

A

ZA SA TA

SA TA OAZ

TA OAZ OAS FAS RAS

OAZ OAS FAS RAS LAT

OAS FAS RAS LAT

RAS LAT BASF

Result =  BASF

Lecture 2 ñ 12

Guaranteed to return shortest path (measured in
number of arcs) from start to goal.

Let
• b = branching factor
• m = maximum depth
• d = goal depth

• O(bd) time
• O(bd) space

Properties of BFS

B
A

Z
O

S F

C

P

R

T L M D



3

Lecture 2 ñ 13

Iterative Deepening

• DFS is efficient in space, but has no path-length guarantee
• BFS finds min-step path but requires exponential space
• Iterative deepening: Perform a sequence of DFS searches with

increasing depth-cutoff until goal is found.

………

O(bd)O(db)d

O(b4)O(4b)4

Sum = O(bd+1)Max = O(db)Total

O(b3)O(3b)3

O(b2)O(2b)2

O(b)O(b)1

TimeSpaceDFS cutoff
depth

Lecture 2 ñ 14

Uniform Cost Search

• Breadth-first and Iterative-Deepening find path with
fewest steps (hops).

• If steps have unequal cost, this is not interesting.
• How can we find the shortest path (measured by

sum of distances along path)?
• Uniform Cost Search:

• Nodes in agenda keep track of total path length
from start to that node

• Agenda kept in priority queue ordered by path
length

• Get shortest path in queue
• Explores paths in contours of total path length;

finds optimal path.

Lecture 2 ñ 15

S140 O146 L229

Uniform Cost Search

A
B

Z
O

S F

C

PR

T L M
D

118

75

71 151

140

111 70 75

120

90

99

211

97

146 138

101

A

T118 S140 O146

Z75 T118 S140

• We examine a node to see if it is the goal only
when we take it off the agenda, not when we
put it in.

• The algorithm is optimal only when the costs
are non-negative.

O146 L229 R230 F229 O291
L229 R230 F229 O291

 R230 F229 O291 M299
 …

Lecture 2 ñ 16

Uniform Cost Search

• Time cost is O(bm)  [not O(bd) as in Russell&Norvig]

• Space cost could also be O(bm), but is probably
more like O(bd) in most cases.

Lecture 2 ñ 17

Uninformed vs. Informed Search

• Depth-first, breadth-first and uniform-cost searches are
uninformed.

• In informed search there is an estimate available of the cost
(distance) from each state (city) to the goal.

• This estimate (heuristic) can help you head in the right
direction.

• Heuristic embodied in function h(n), estimate of remaining
cost from search node n to the least cost goal.

• Graph being searched is a graph of states.  Search algorithm
defines a tree of search nodes.  Two paths to the same state
generate two different search nodes.

• Heuristic could be defined on underlying state; the path to a
state does not affect estimate of distance to the goal.

Lecture 2 ñ 18

Using Heuristic Information

1 200

300 1

X Y

• Should we go to X or Y?

• Uniform cost says go to X

• If h(X) À h(Y), this should
affect our choice

• If g(n) is path-length of
node n, we can use g(n)
+ h(n) to prioritize the
agenda

• This method is called A*

[pronounced “A star”]



4

Lecture 2 ñ 19

Admissibility

• What must be true about
h for A* to find optimal
path?

• A* finds optimal path if h
is admissible; h is
admissible when it never
overestimates.

• In this example, h is not
admissible.

• In route finding
problems, straight-line
distance to goal is
admissible heuristic.

2 73

1 1

X Y
h=100 h=1

g(X)+h(X) = 102

g(Y)+h(Y) = 74

Optimal path is not
found!

h=0h=0

Lecture 2 ñ 20

Why use estimate of goal distance?

A B

xx

start

goal

Order in which uniform-cost
looks at nodes.  A and B are
same distance from start, so
will be looked at before any
longer paths.  No “bias”
towards goal.

Order of examination using
dist. from start + estimate of
dist. to goal.  Note “bias”
toward the goal; points away
from goal look worse.

Assume states are points
the Euclidean plane.

Lecture 2 ñ 21

Heuristics

• If we set h=0, then A* is uniform-cost search; h=0
is admissible heuristic (when all costs are non-
negative).

• Very difficult to find heuristics that guarantee sub-
exponential worst-case cost.

• Heuristic functions can be solutions to “relaxed”
version of original problem, e.g. straight line
distance is solution to route-finding when we relax
constraint to follow the roads.

Lecture 2 ñ 22

Search Problems

• In problem-solving problems, we want a path as
the answer, that is, a sequence of actions to get
from one state to another.

• In search problems, all we want is the best state
(that satisfies some constraints).

• Set of states:  S
• Initial state
• Operators:  S Æ S
• Cost (Utility): S Æ ¬

Lecture 2 ñ 23

Example: Traveling Salesman

• In traveling salesman problem (TSP) we want a least-cost
path that visits all the cities in a graph once.

• Note that this is not a route-finding problem, since we must
visit every city, only the order of visit changes.

• A state in the search for TSP solution is a complete tour of the
cities.

• An operator is not an action in the world that moves from city
to city, it is an action in the information space that moves
from one potential solution (tour) to another.

• Possible TSP operators: Swap two cities in a tour

Lecture 2 ñ 24

Example: Square Root

• Given y=x2 Œ ¬ find x Œ ¬

• Utility of x is a measure of error, e.g. U = 1/2 (x2 – y)2

• Operator:  x Æ x – r —x U (for small stepsize r)

• take a step down gradient (wrt x) of the error
• For example, x = x – r (x2 – y) 2x
• Assume y = 7, start with guess x = 3, let r =

0.01
• Next guesses are: 2.880, 2.805, 2.756, …, 2.646

• We can prove that there is a unique x whose error
value is minimal and that applying this operator
repeatedly (for some value of r) will find this
minimum x (to some specified accuracy).



5

Lecture 2 ñ 25

Multiple Minima

• Most problems of interest do not have unique global
minima that can be found by gradient descent from
an arbitrary starting point.

• Typically, local search methods (such as gradient
descent) will find local minima and get stuck there.

• How can we escape from local minima?
• Take some random steps!
• Re-start from randomly chosen starting points

Error

Local minimum

Global minimum

Lecture 2 ñ 26

Simulated Annealing

• T = initial temperature
• x = initial guess
• v = Energy(x)
• Repeat while T > final temperature

• Repeat n times
• x0 ¨ Move(x)
• v0 = Energy(x0)
• If v0 < v then accept new x [ x ¨ x0 ]
• Else accept new x with probability exp(-(v0 – v)/kT)

• T = 0.95T /* for example */
• At high temperature, most moves accepted (and can move

between “basins”)
• At low temperature, only moves that improve energy are

accepted

Lecture 2 ñ 27

Search Demonstration

• There‘s a cool applet at UBC for playing around with
search algorithms: www.cs.ubc.ca/labs/lci/CIspace

Lecture 2 ñ 28

Recitation Problems

Problems 3.17 a, b, f (Russell & Norvig)
What would be a good heuristic function in that

domain? (from 3.17)
What would be a good heuristic function for the

Towers of Hanoi problem?  (look this up on the
web, if you don’t know about it)

Other practice problems that we might talk about in
recitation: 4.4, 4.11a,b


