
1

Lecture 4 • 1

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity
Satisfiable sentence: there exists a truth value

assignment for the variables that makes the
sentence true (truth value = t).

• Algorithm?
• Try all the possible assignments to see if one

works.
Valid sentence: all truth value assignments for the

variables make the sentence true.
• Algorithm?
• Try all possible assignments and check that they

all work.
Are there better algorithms than these?

Lecture 4 • 2

Satisfiability Problems

Many problems can be expressed as a list of constraints.
Answer is assignment to variables that satisfy all the
constraints.

Examples:
• Scheduling people to work in shifts at a hospital

– Some people don’t work at night
– No one can work more than x hours a week
– Some pairs of people can’t be on the same shift
– Is there assignment of people to shifts that satisfy all

constraints?
• Finding bugs in programs [Daniel Jackson, MIT]

– Write logical specification of, e.g. air traffic controller
– Write assertion “two airplanes on same runway at

same time”
– Can these be satisfied simultaneously?

Lecture 4 • 3

Conjunctive Normal Form

 Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

• is a clause, which is a disjunction
of literals

• A, B, and : C are literals, each of which is a
variable or the negation of a variable.

• Each clause is a requirement which must be
satisfied and it has different ways of being
satisfied.

• Every sentence in propositional logic can be
written in CNF

†

(A ⁄ B ⁄ÿC)Ÿ (B ⁄ D)Ÿ (ÿA) Ÿ (B ⁄C)

†

(A ⁄ B ⁄ÿC)

Lecture 4 • 4

Converting to CNF

1. Eliminate arrows using definitions
2. Drive in negations using De Morgan’s Laws

3. Distribute or over and

4. Every sentence can be converted to CNF, but it
may grow exponentially in size

†

A ⁄ (B ŸC) ≡ (A ⁄ B)Ÿ (A ⁄C)

jfjf ÿŸÿ≡⁄ÿ)(
jfjf ÿ⁄ÿ≡Ÿÿ)(

Lecture 4 • 5

CNF Conversion Example

1. Eliminate arrows

2. Drive in negations

3. Distribute

†

(A ⁄ B) Æ (C Æ D)

)()(DCBA ⁄ÿ⁄⁄ÿ

†

(ÿA ŸÿB) ⁄ (ÿC ⁄ D)

†

(ÿA ⁄ÿC ⁄ D)Ÿ (ÿB ⁄ÿC ⁄ D)

Lecture 4 • 6

Simplifying CNF

• An empty clause is false (no options to satisfy)
• A sentence with no clauses is true (no

requirements)
• A sentence containing an empty clause is false

(there is an impossible requirement)

2

Lecture 4 • 7

Recitation Problems - I

Convert to CNF
1.

2.

3.

4.

5.

6.

†

(A Æ B) Æ C

†

A Æ (B Æ C)

†

(A Æ B) ⁄ (B Æ A)

†

ÿ(ÿP Æ (P Æ Q))

†

(P Æ (Q Æ R)) Æ (P Æ (R Æ Q))

†

(P Æ Q) Æ ((Q Æ R) Æ (P Æ R))

Lecture 4 • 8

Algorithms for Satisfiability

Given a sentence in CNF, how can we prove it is
satisfiable?

Enumerate all possible assignments and see if
sentence is true for any of them. But, the number
of possible assignments grows exponentially in the
number of variables.

Consider a search tree where at each level we
consider the possible assignments to one variable,
say P. On one branch, we assume P is f and on the
other that it is t.

Given an assignment for a variable, we can simplify
the sentence and then repeat the process for
another variable.

Lecture 4 • 9

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints
• simplifies to
• simplifies to
• is satisfied and can be removed
• simplifies to

Result is

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

P ⁄Q

†

Q

†

P ⁄ÿQ⁄ R

†

ÿQ⁄ R
TP ÿ⁄ÿ

†

P ⁄ S

†

S

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)Ÿ (S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

Lecture 4 • 10

Assign and Simplify

Given a CNF sentence f and a literal U

• Delete all clauses containing U (they’re satisfied)
• Delete :U from all remaining clauses (because U

is not an option)

We denote the simplified sentence by f(U)

Works for positive and negative literals U

Lecture 4 • 11

Search Example

f(:P) f(P)

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

Lecture 4 • 12

Search Example

f(:P) f(P)

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

3

Lecture 4 • 13

Search Example

f(Q)

f(:P)

f(:Q)

f(P)

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

Lecture 4 • 14

Search Example

f(Q)

f(:P)

f(:Q)

f(P)

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(R) Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

Lecture 4 • 15

Search Example

f(Q)

f(:R) f(R)

f(:P)

f(:Q)

f(P)

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(R) Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

Lecture 4 • 16

Search Example

f(Q)

f(:R) f(R)

f(:P)

f(:Q)

f(P)

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (S)Ÿ (T ⁄ S)Ÿ (ÿS ⁄T)

†

(R) Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(T)Ÿ (S)Ÿ (ÿS ⁄T)

Lecture 4 • 17

Search Example

f(Q)

f(:R) f(R)

True

f(T)

f(S)

f(:P)

f(:Q)

f(P)

The assignment for a literal
appearing by itself in a clause
is forced: true for a positive
literal, false for a negative
literal.

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (S)Ÿ (T ⁄ S)Ÿ (ÿS ⁄T)

†

(R) Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(T)Ÿ (S)Ÿ (ÿS ⁄T)

†

(T)Ÿ (T)

Lecture 4 • 18

Search Example

f(Q)

f(:R) f(R)

True

f(T)

f(S)

f(:P)

f(:Q)

f(P)

The assignment for a literal
appearing by itself in a clause
is forced: true for a positive
literal, false for a negative
literal.

†

(P ⁄Q)Ÿ (P ⁄ÿQ⁄ R) Ÿ (T ⁄ÿR) Ÿ (ÿP ⁄ÿT)
Ÿ(P ⁄ S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(Q)Ÿ (ÿQ⁄ R)Ÿ (T ⁄ÿR)
Ÿ(S)Ÿ (T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

()Ÿ (S)Ÿ (T ⁄ S)Ÿ (ÿS ⁄T)

†

(R) Ÿ (T ⁄ÿR) Ÿ (S)
Ÿ(T ⁄ R ⁄ S)Ÿ (ÿS ⁄T)

†

(T)Ÿ (S)Ÿ (ÿS ⁄T)

†

(T)Ÿ (T)

4

Lecture 4 • 19

Another Example

True

f(S)

f(T)

Since T occurs only
positively, it might
as well be assigned
to true

†

(T ⁄ X)Ÿ (ÿS ⁄T)Ÿ (S ⁄ X)

†

(S ⁄ X)

Lecture 4 • 20

DPLL(f)

• If f is empty, return true
(embrace truth)

• If there is an empty clause in f, return false
(reject falsity)

• If there is a unit clause U in f, return DPLL(f(U))
(accept the inevitable)

• If there is a pure literal U in f, return DPLL(f(U))
(go with the flow)

• For some variable v
(take a guess)
– If DPLL(f(v)) then return true
– Else return DPLL(f(: v))

Unit clause has only one literal
Pure literal only occurs positively or negatively

Lecture 4 • 21

Recitation Problems - II

How would you modify DPLL so it:
• returns a satisfying assignment if there is one,

and false otherwise
• returns all satisfying assignments

Would using DPLL to return all satisfying assignments
be any more efficient than simply listing all the
assignments and checking to see whether they’re
satisfying? Why or why not?

Lecture 4 • 22

Making good guesses

MOMS heuristic for choosing variable v:

Maximum number of Occurrences,
Minimum Sized clauses

• Choose highly constrained variables
• If you’re going to fail, fail early

Lecture 4 • 23

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

DPLL is sound and complete

We will now consider some algorithms for
satisfiability that are sound but not complete.

• If they give an answer, it is correct
• But, they may not give an answer
• They may be faster than any complete algorithm

Lecture 4 • 24

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

Loop n times
• Randomly choose assignment A
• Loop m times

– Flip the variable that results in lowest cost
– Exit if cost is zero

5

Lecture 4 • 25

GSAT vs DPLL

• GSAT is sound
• It’s not complete
• You couldn’t use it effectively to generate all

satisfying assignments
• For a while, it was beating DPLL in SAT contests,

but now the DPLL people are tuning up their
heuristics and doing better

• Weakly constrained problems are easy for both
DPLL and GSAT

• Highly constrained problems are easy for DPLL
but hard for GSAT

• Problems in the middle are hard for everyone

Lecture 4 • 26

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

– Randomly select unsatisfied clause C
– With p = 0.5 either

– Flip the variable in C that results in lowest cost, or
– Flip a randomly chosen variable in C

– Exit if cost is zero

