6.825 Techniques in Artificial Intelligence

Probability

- Logic represents uncertainty by disjunction
- But, cannot tell us how likely the different conditions are
- Probability theory provides a quantitative way of encoding likelihood

Foundations of Probability

Is coin-flipping deterministic?
$\mathrm{P}($ the sun comes up tomorrow $)=0.999$

- Frequentist
- Probability is inherent in the process

Probs can be

- Probability is estimated from measurements
- Subjectivist (Bayesian)
- Probability is a model of your Probs can be degree of belief inconsistent!

Axioms of Probability

- Universe of atomic events (like interpretations in logic)
- Events are sets of atomic events
- P: events $\rightarrow[0,1]$
- $P($ true $)=1=P(U)$
- $P($ false $)=0=P(\emptyset)$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

$A \wedge B$

A Question

Jane is from Berkeley. She was active in anti-war protests in the 60's. She lives in a commune.

- Which is more probable?

1. Jane is a bank teller
2. Jane is a feminist bank teller

A Question

Jane is from Berkeley. She was active in anti-war protests in the 60's. She lives in a commune.

- Which is more probable?

1. Jane is a bank teller
2. Jane is a feminist bank teller
3. A
4. $A \wedge B$

Prove that

- $P(\neg A)=1-P(A)$
- $P(A \vee B \vee C)=$
$P(A)+P(B)+P(C)-$
$P(A \wedge B)-P(A \wedge C)-P(B \wedge C)+$ $P(A \wedge B \wedge C)$

Dutch Book

- You believe
- $P(A)=0.3$
- $P(A \wedge B)=0.4$ (and also that $P(\neg(A \wedge B))=0.6)$

Y Yu		Bet Stakes		$\mathrm{A} \wedge \mathrm{B}$	$\neg \mathrm{A} \wedge \mathrm{B}$	$\mathrm{A} \wedge \neg \mathrm{B}$	$\neg \mathrm{A} \wedge \neg \mathrm{B}$
\mathbf{A}	0.3	\mathbf{A}	$\mathbf{3}$ to $\mathbf{7}$	-7	$3+\varepsilon$	-7	$3+\varepsilon$
$\mathbf{A \wedge B}$	0.4	$\neg \mathbf{(A \wedge B)}$	$\mathbf{6}$ to $\mathbf{4}$	$6+\varepsilon$	-4	-4	-4

- No matter what the state of the world, you lose
- This is because your beliefs are inconsistent

If you take a 3 to 7 bet on some condition C, then if C turns out to be true, you lose 7, but if it's false, you win 3.

Joint Distribution Example

	Toothache	\neg Toothache
Cavity	0.04	0.06
\neg Cavity	0.01	0.89

- The sum of the entries in this table has to be 1
- Given this table, one can answer all the probability questions about this domain
- $P($ cavity $)=0.1 \quad$ [add elements of cavity row]
- P (toothache) $=0.05$ [add elements of toothache column]
- $P(A \mid B)=P(A \wedge B) / P(B)$ [prob of A when U is limited to B]
- $P($ cavity \mid toothache $)=0.04 / 0.05=0.8$

Independence

- A and B are independent iff
- $P(A \wedge B)=P(A) \cdot P(B)$
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- Independence is essential for efficient probabilistic reasoning
- A and B are conditionally independent given C iff
- $P(A \mid B, C)=P(A \mid C)$
- $P(B \mid A, C)=P(B \mid C)$
- $P(A \wedge B \mid C)=P(A \mid C) \cdot P(B \mid C)$

Random Variables

- Random variables
- Function: discrete domain $\rightarrow[0,1]$
- Sums to 1 over the domain
-Raining is a propositional random variable
-Raining(true) $=0.2$
$-P($ Raining $=$ true $)=0.2$
- Raining (false) $=0.8$
$-\mathrm{P}($ Raining $=$ false $)=0.8$
- Joint distribution
- Probability assignment to all combinations of values of random variables

Bayes' Rule

- Bayes' Rule

- $P(A \mid B)=P(B \mid A) P(A) / P(B)$
- $P($ disease \| symptom)
$=P($ symptom \mid disease $) P($ disease $) / P($ symptom $)$
- Imagine
- disease $=$ BSE
- symptom = paralysis
- P(disease | symptom) is different in England vs US
- P(symptom | disease) should be the same
- It is more useful to learn P (symptom | disease)
- Conditioning
- $P(A)=P(A \mid B) P(B)+P(A \mid \neg B) P(\neg B)$

$$
=P(A \wedge B)+P(A \wedge \neg B)
$$

Examples of Conditional Independence

- Toothache (T)
- Spot in Xray (X)
- Cavity (C)
- None of these propositions are independent of one other
- T and X are conditionally independent given C
- Battery is dead (B)
- Radio plays (R)
- Starter turns over (S)
- None of these propositions are independent of one another
- R and S are conditionally independent given B

Combining evidence

- Bayesian updating given two pieces of information

$$
P(C \mid T, X)=\frac{P(T, X \mid C) P(C)}{P(T, X)}
$$

- Assume that T and X are conditionally independent given C

$$
\frac{P(T \mid C) P(X \mid C) P(C)}{P(T, X)}+\frac{P(T \mid \neg C) P(X \mid \neg C) P(\neg C)}{P(T, X)}=1
$$

$$
P(C \mid T, X)=\frac{P(T \mid C) P(X \mid C) P(C)}{P(T, X)}
$$

$$
P(T \mid C) P(X \mid C) P(C)+P(T \mid \neg C) P(X \mid \neg C) P(\neg C)=P(T, X)
$$

- We can do the evidence combination sequentially

Normalizing Factor

$$
P(C \mid T, X)+P(\neg C \mid T, X)=1
$$

Recitation Problems II

- Show that $P(A)>=P(A, B)$
- Show that $P(A \mid B)+P(\sim A \mid B)=1$
- Show that the different formulations of conditional independence are equivalent:
- $P(A \mid B, C)=P(A \mid C)$
- $P(B \mid A, C)=P(B \mid C)$
- $P(A \wedge B \mid C)=P(A \mid C) \cdot P(B \mid C)$
- Conditional Bayes' rule. Write an expression for $P(A \mid B, C)$ in terms of $P(B \mid A, C)$.

