### 6.825 Techniques in Artificial Intelligence

### Probability

- Logic represents uncertainty by disjunction
- But, cannot tell us how likely the different conditions are
- Probability theory provides a quantitative way of encoding likelihood

Lecture 14 • 1











| • You believe<br>• $P(A) = 0.3$<br>• $P(A \land B) = 0.4$ (and also that $P(\neg (A \land B)) = 0.6$ ) |                                                                                                                                                                                                                                                             |     |            |        |            |        |                  |                       |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--------|------------|--------|------------------|-----------------------|--|--|
|                                                                                                        | You                                                                                                                                                                                                                                                         |     | Bet Stakes |        | $A\wedgeB$ | ¬ A ∧B | $A \land \neg B$ | $\neg A \land \neg B$ |  |  |
|                                                                                                        | A                                                                                                                                                                                                                                                           | 0.3 | A          | 3 to 7 | -7         | 3 + ε  | -7               | 3 + ε                 |  |  |
|                                                                                                        | A ∧ B                                                                                                                                                                                                                                                       | 0.4 | ¬(A ∧B)    | 6 to 4 | 6 + ε      | -4     | -4               | -4                    |  |  |
| •<br>•<br>If                                                                                           | <ul> <li>No matter what the state of the world, you lose</li> <li>This is because your beliefs are inconsistent</li> <li>If you take a 3 to 7 bet on some condition C, then if C turns out to be true, you lose 7, but if it's false, you win 3.</li> </ul> |     |            |        |            |        |                  |                       |  |  |
|                                                                                                        |                                                                                                                                                                                                                                                             |     | , ,        | ,-     |            |        |                  | Lecture 14 • 7        |  |  |











• R and S are conditionally independent given B

Lecture 14 • 12

## **Combining evidence**

• Bayesian updating given two pieces of information

 $P(C|T, X) = \frac{P(T, X|C)P(C)}{P(T, X)}$ 

 $\bullet$  Assume that T and X are conditionally independent given C

$$P(C|T,X) = \frac{P(T|C)P(X|C)P(C)}{P(T,X)}$$

• We can do the evidence combination sequentially

### **Normalizing Factor**

 $P(C|T, X) + P(\neg C|T, X) = 1$ 

$$\frac{P(T|C)P(X|C)P(C)}{P(T,X)} + \frac{P(T|\neg C)P(X|\neg C)P(\neg C)}{P(T,X)} = 1$$

 $P(T|C)P(X|C)P(C) + P(T|\neg C)P(X|\neg C)P(\neg C) = P(T,X)$ 

Lecture 14 • 14

# **Recitation Problems II**

- Show that P(A) >= P(A,B)
- Show that  $P(A|B) + P(\sim A|B) = 1$
- Show that the different formulations of conditional independence are equivalent:
  P(A | B, C) = P(A | C)
  P(B | A, C) = P(B | C)
  - $\bullet P(B \mid A, C) = P(B \mid C)$
  - $P(A \land B \mid C) = P(A \mid C) \cdot P(B \mid C)$
- Conditional Bayes' rule. Write an expression for  $P(A \mid B,C)$  in terms of  $P(B \mid A,C)$ .

Lecture 14 • 15

Lecture 14 • 13