6.825 Techniques in Artificial Intelligence

Bayesian Networks

- To do probabilistic reasoning, you need to know the joint probability distribution
- But, in a domain with N propositional variables, one needs 2^N numbers to specify the joint probability distribution
- We want to exploit independences in the domain
- Two components: structure and numerical parameters

Lecture 15 • 1

Recitation Problems

Use the Bayesian network from the previous slides to answer the following questions:

- Are A and F d-separated if M is instantiated?Are A and F d-separated if nothing is
- instantiated?
- Are A and E d-separated if I is instantiated?
- Are A and E d-separated if B and H are instantiated?
- Describe a situation in which A and G are d-separated.
- Describe a situation in which A and G are d-connected.

Lecture 15 • 19

Bayesian (Belief) Networks

- Set of variables, each has a finite set of values
- Set of directed arcs between them forming acyclic graph
- \bullet Every node A, with parents $\mathsf{B}_1,\,...,\,\mathsf{B}_n,$ has P(A | $\mathsf{B}_1,...,\mathsf{B}_n)$ specified

Theorem: If A and B are d-separated given evidence e, then $P(A \mid e) = P(A \mid B, e)$

Lecture 15 • 20

