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6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come
From?

• Human experts

• Learning from data

• A combination of both
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Human Experts

• Encoding rules obtained from experts, e.g.
physicians for PathFinder

• Extracting these rules are very difficult, especially
getting reliable probability estimates

• Some rules have a simple deterministic form:

Age
Legal
Drinker

• But, more commonly, we have many potential
causes for a symptom and any one of these causes
are sufficient for a symptom to be true
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Multiple Independent Causes

Fever

Flu

Malaria

Cold

P(Fever | Flu) = 0.6

P(Fever | Cold) = 0.4

P(Fever | Malaria) = 0.9

In general, the table in the Fever node
gives prob of fever given all
combination of values of Flu, Cold and
Malaria P(Fev | Flu, Col, Mal)

Big, and hard to assess
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Noisy Or Example

P(Fever | Flu) = 0.6

P(Fever | Cold) = 0.4

P(Fever | Malaria) = 0.9

Look only at the causes that are true:

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to

acquire

Fever

Flu

Malaria

Cold
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Noisy Or

• Store P(E|Ci) for all Ci

• Given a set, CT, of true causes

Effect

C1

Cn

C2

†  

Pr(E C) =1 - Pr(ÿ E C)

=1 - Pr(ÿ E CT )

=1 - Pr(ÿ E | Ci)
C i Œ CT

’

=1 - (1 - Pr(E | Ci))
C i Œ CT

’

Lecture 17 • 6

Recitation Problem

• Compute the conditional probability table for
P(Fever | Flu, Cold, Malaria), for all assignments to

the variables Flu, Cold, and Malaria.
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Learning Bayesian Networks

• Instance of the general problem of probability
density estimation

• discrete space

• interesting structure

• Four cases

• structure known or unknown

• all variables observable or some unobservable

This lecture: all variables observable, structure known or
unknown
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Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

• Given a data set D = {<v1
1,…,vm

1>,…, {<v1
k,…,vm

k>}

• Elements of D are assumed to be independent
given M

• Find the model M (in this case, CPTs) that
maximizes Pr(D|M)

• Known as the maximum likelihood model

• Humans are good at providing structure, data is
good at providing numbers

values of nodes

in sample 1

values of nodes

in sample k

Lecture 17 • 9

Estimating Conditional Probabilities

V1

V3V2

V4

• Use counts and definition of conditional probability

• Initializing all counters to 1 avoids 0 probabilities
and converges on the maximum likelihood estimate

generally, the number of
possible values of the variable

on the left of the bar
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Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

• Assume each data sample generated independently

• Easier to compute the log; monotonic

†  

Pr(D M) = Pr(v j M)
j

’

= Pr(Ni = vi
j Parents(Ni), M)

i

’
j

’

†  

logPr(D M) = log Pr(Ni = vi
j Parents(Ni),M)

i

’
j

’

= logPr(Ni = vi
j Parents(Ni),M)

i

Â
j

Â
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Learning the Structure

• For a fixed structure, our counting estimates of the
CPT converge to the maximum likelihood model

• What if we get to pick the structure as well?

• In general, the best model will have no conditional
independence relationships

• Undesirable, for reasons of overfitting
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Overfitting

• Given a set of data points

x

y
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Overfitting

• Given a set of data points, you could

• fit them with a line, with a lot of error

x

y
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Overfitting

• Given a set of data points, you could

• fit them with a line, with a lot of error

• fit with a parabola, with a little error

x

y
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Overfitting

• Given a set of data points, you could

• fit them with a line, with a lot of error

• fit with a parabola, with a little error

• fit with 10th order polynomial, with no error

x

y
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Overfitting

• Given a set of data points, you could

• fit them with a line, with a lot of error

• fit with a parabola, with a little error

• fit with 10th order polynomial, with no error

• 10th order polynomial over fits

• less robust to variations in data

• less likely to generalize well

x

y
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Scoring Metric

• What if we want to vary the structure?

• We want a network that has conflicting properties

• good fit to data: log likelihood

• low complexity: total number of parameters

• Try to maximize scoring metric, by varying M
(structure and parameters) given D

• Parameter a  controls the tradeoff between fit and
complexity

†  

logPr(D M) - a # M
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Search in Structure Space

• No direct way to find the best structure

• Too many to enumerate them all

• Start with some initial structure

• Do local search in structure space

• neighborhood: add, delete, or reverse an arc

• maintain no directed cycles

• once you pick a structure, compute maximum-
likelihood parameters, and then calculate the
score of the model

• increase score (or decrease sometimes, as in
walkSAT or simulated annealing)
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Initialization

Lots of choices!

• no arcs

• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

–variable Vi has parents randomly chosen
from V1 … Vn-1

• best tree network (can be computed in
polynomial time)

–compute pairwise mutual information
between every pair of variables

–find maximum-weight spanning tree
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Recitation problem

Consider a domain with three binary nodes: A, B, and C

1. How many possible network structures are there over three
nodes?

Data set: {<0,1,1>, <0, 1, 1>, <1,0,0>}

2. What parameter estimates would you get for the CPTs in
each of the network structures on the following slide?

3. What is the log likelihood of the data given each of the
models (given the estimates from the previous part)?

4. Do parts 2 and 3 again without the Bayesian correction (or
with it, if you didn’t use it the first time)

5. How many parameters are there in each of the models?
(Don’t count p and 1-p as separate parameters)

There are too many network structures for everyone to do every problem.  So, if the
day of your birthday is 0 mod 3, then do structures s1 and s2.  If it’s 1 mod 3, then do
structures s3 and s4.  And if it’s 2 mod 3, then do structures s5 and s6.
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Recitation Problem

A

CB

A

CB

A

CB

A

CB

A

CB

A

CB

S1

S6S4S3

S5S2


