6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come From?

- Human experts
- Learning from data
- A combination of both

Noisy Or Example

Look only at the causes that are true:
$P(F e v \mid F l u, \neg C o l, M a l)=1-P(\neg F e v \mid F l u, M a l)$
$P(\neg$ Fev \mid Flu, Mal $)=P(\neg$ Fev $\mid F l u) P(\neg$ Fev, Mal $)$

$$
=(0.4)(0.1)=0.04
$$

Recitation Problem

- Compute the conditional probability table for P(Fever | Flu, Cold, Malaria), for all assignments to the variables Flu, Cold, and Malaria.

Learning Bayesian Networks

- Instance of the general problem of probability density estimation
- discrete space
- interesting structure
- Four cases
- structure known or unknown
- all variables observable or some unobservable

This lecture: all variables observable, structure known or unknown

Known Structure

- Given nodes and arcs of a Bayesian network with m nodes
- Given a data set $D=\left\{\left\langle v_{1}{ }^{1}, \ldots, v_{m}{ }^{1}\right\rangle, \ldots,\left\{\left\langle v_{1}{ }^{k}, \ldots, v_{m}{ }^{k}\right\rangle\right\}\right.$

$$
\text { values of nodes } \quad \text { values of nodes }
$$

$$
\text { in sample } 1
$$

in sample k

- Elements of D are assumed to be independent given M
- Find the model M (in this case, CPTs) that maximizes $\operatorname{Pr}(\mathrm{D} \mid \mathrm{M})$
- Known as the maximum likelihood model
- Humans are good at providing structure, data is good at providing numbers

Estimating Conditional Probabilities

- Use counts and definition of conditional probability
- Initializing all counters to 1 avoids 0 probabilities and converges on the maximum likelihood estimate

Learning the Structure

- For a fixed structure, our counting estimates of the CPT converge to the maximum likelihood model
- What if we get to pick the structure as well?
- In general, the best model will have no conditional independence relationships
- Undesirable, for reasons of overfitting

Goodness of Fit

- Given data set D and model M, measure goodness of fit using log likelihood
- Assume each data sample generated independently

$$
\begin{aligned}
\operatorname{Pr}(D \mid M) & =\prod_{j} \operatorname{Pr}\left(v^{j} \mid M\right) \\
& =\prod_{j} \prod_{i} \operatorname{Pr}\left(N_{i}=v_{i}^{j} \mid \operatorname{Parents}\left(N_{i}\right), M\right)
\end{aligned}
$$

- Easier to compute the log; monotonic

$$
\begin{aligned}
\log \operatorname{Pr}(D \mid M) & =\log \prod_{j} \prod_{i} \operatorname{Pr}\left(N_{i}=v_{i}^{j} \mid \operatorname{Parents}\left(N_{i}\right), M\right) \\
& =\sum_{j} \sum_{i} \log \operatorname{Pr}\left(N_{i}=v_{i}^{j} \mid \operatorname{Parents}\left(N_{i}\right), M\right)
\end{aligned}
$$

Overfitting

- Given a set of data points

Overfitting

- Given a set of data points, you could
- fit them with a line, with a lot of error
\bullet fit with a parabola, with a little error
- fit with 10th order polynomial, with no error

Scoring Metric

- What if we want to vary the structure?
- We want a network that has conflicting properties - good fit to data: log likelihood
- low complexity: total number of parameters
- Try to maximize scoring metric, by varying M (structure and parameters) given D

$$
\log \operatorname{Pr}(D \mid M)-\alpha \# M
$$

- Parameter α controls the tradeoff between fit and complexity

Overfitting

- Given a set of data points, you could - fit them with a line, with a lot of error
- fit with a parabola, with a little error

Overfitting

- Given a set of data points, you could
- fit them with a line, with a lot of error
- fit with a parabola, with a little error
- fit with 10th order polynomial, with no error
- 10th order polynomial over fits
- less robust to variations in data
- less likely to generalize well

Search in Structure Space

- No direct way to find the best structure
- Too many to enumerate them all
- Start with some initial structure
- Do local search in structure space
- neighborhood: add, delete, or reverse an arc
- maintain no directed cycles
- once you pick a structure, compute maximumlikelihood parameters, and then calculate the score of the model
- increase score (or decrease sometimes, as in walkSAT or simulated annealing)

Initialization
Lots of choices!
• no arcs
• choose random ordering $\mathrm{V}_{1} \ldots \mathrm{~V}_{\mathrm{n}}$
\quad - variable V_{i} has all parents $\mathrm{V}_{1} \ldots \mathrm{~V}_{\mathrm{n}-1}$
- variable V_{i} has parents randomly chosen
from $\mathrm{V}_{1} \ldots \mathrm{~V}_{\mathrm{n}-1}$
• best tree network (can be computed in
polynomial time)
- compute pairwise mutual information
between every pair of variables
- find maximum-weight spanning tree

Recitation problem

Consider a domain with three binary nodes: A, B, and C

1. How many possible network structures are there over three nodes?
Data set: $\{<0,1,1\rangle,<0,1,1\rangle,<1,0,0\rangle\}$
2. What parameter estimates would you get for the CPTs in each of the network structures on the following slide?
3. What is the log likelihood of the data given each of the models (given the estimates from the previous part)?
4. Do parts 2 and 3 again without the Bayesian correction (or with it, if you didn't use it the first time)
5. How many parameters are there in each of the models? (Don't count p and 1-p as separate parameters)

There are too many network structures for everyone to do every problem. So, if the day of your birthday is $0 \bmod 3$, then do structures s 1 and s 2 . If it's $1 \bmod 3$, then do structures s 3 and s 4 . And if it's $2 \bmod 3$, then do structures $s 5$ and s6.

