6.825 Techniques in Artificial Intelligence

Learning With Hidden Variables

- Why do we want hidden variables?
- Simple case of missing data
- EM algorithm
- Bayesian networks with hidden variables

		Missing Data
A	B	- Given two variables, no independence relations - Some data are missing - Estimate parameters in joint distribution - Data must be missing at random
1	1	
1	1	
0	0	
0	0	
0	0	
0	H	
0	1	
1	0	
		Lecture 18.3

Ignore it

Estimated Parameters

	$\sim A$	A
$\sim B$	$3 / 7$	$1 / 7$
B	$1 / 7$	$2 / 7$

	$\sim \mathrm{A}$	A
$\sim B$.429	.143
B	.143	.285

$\log \operatorname{Pr}(D \mid M)=\log (\operatorname{Pr}(D, H=0 \mid M)+\operatorname{Pr}(D, H=1 \mid M))$
$=3 \log .429+2 \log .143+2 \log .285+\log (.429+.143)$ $=-9.498$

Recitation Problem

Show the remaining steps required to get from this expression
$\log \operatorname{Pr}(D \mid M)=\log (\operatorname{Pr}(D, H=0 \mid M)+\operatorname{Pr}(D, H=1 \mid M))$
to a number for the log likelihood of the observed data given the model.

Explain any assumptions you might have had to make.

Fill in With Best Value

Estimated Parameters

	$\sim A$	A
$\sim B$	$4 / 8$	$1 / 8$
B	$1 / 8$	$2 / 8$

	$\sim \mathrm{A}$	A
$\sim \mathrm{B}$.5	.125
B	.125	.25

$\log \operatorname{Pr}(D \mid M)=\log (\operatorname{Pr}(D, H=0 \mid M)+\operatorname{Pr}(D, H=1 \mid M)$
$=3 \log .5+2 \log .125+2 \log .25+\log (.5+.125)$ $=-9.481$

Fill in With Distribution

Use distribution over H to compute
better distribution over A, B
Maximum likelihood estimation using expected counts

θ_{1} | | $\sim A$ | A |
| :--- | :--- | :--- |
| $\sim B$ | $3.5 / 8$ | $1 / 8$ |
| B | $1.5 / 8$ | $2 / 8$ |

	$\sim A$	A
$\sim B$.4375	.125
B	.1875	.25

Fill in With Distribution

A	B
1	1
1	1
0	0
0	0
0	0
0	
0	1
1	0

Use new distribution over $A B$ to get a better distribution over H
θ_{1}

$\operatorname{Pr}\left(H \mid D, \theta_{1}\right)=\operatorname{Pr}\left(\neg A, B \mid \theta_{1}\right) / \operatorname{Pr}\left(\neg A \mid \theta_{1}\right)$
$=.1875 / .625$
$=0.3$

Fill in With Distribution

A	B
1	1
1	1
0	0
0	0
0	0
0	$0,0.7$
	$1,0.3$
0	1
1	0

Use distribution over H to compute better distribution over A, B
θ_{2}

	$\sim \mathrm{A}$	A
$\sim \mathrm{B}$.4625	.125
B	.1625	.25

Fill in With Distribution

Use new distribution over $A B$ to get a better distribution over H

$$
\theta_{2} \quad \begin{array}{|l|l|l|}
\hline & \sim A & A \\
\hline \sim B & .4625 & .125 \\
\hline B & .1625 & .25 \\
\hline
\end{array}
$$

$\operatorname{Pr}\left(H \mid D, \theta_{2}\right)=\operatorname{Pr}\left(\neg A, B \mid \theta_{2}\right) / \operatorname{Pr}\left(\neg A \mid \theta_{2}\right)$
$=.1625 / .625$
$=0.26$

Fill in With Distribution

A	B
1	1
1	1
0	0
0	0
0	0
0	$0,0.74$
	$1,0.26$
0	1
1	0

Increasing Log-Likelihood				
θ_{0}		\sim A	A	
	~B	. 25	. 25	$\log \operatorname{Pr}\left(D \mid \theta_{0}\right)=-10.3972$
	B	. 25	. 25	ignore: -9.498
θ_{1}		\sim A	A	
	~B	. 4375	. 125	$\log \operatorname{Pr}\left(D \mid \theta_{1}\right)=-9.4760$
	B	. 1875	. 25	
θ_{2}		$\sim A$	A	$\log \operatorname{Pr}\left(D \mid \theta_{2}\right)=-9.4524$
	$\sim B$. 4625	. 125	
	B	. 1625	. 25	
θ_{3}		~A	A	$\log \operatorname{Pr}\left(D \mid \theta_{3}\right)=-9.4514$
	$\sim \mathrm{B}$. 4675	. 125	
	B	. 1575	. 25	

Deriving the EM Algorithm

- Want to find θ to maximize $\operatorname{Pr}(D \mid \theta)$
- Instead, find θ, \tilde{P} to maximize

$$
\begin{aligned}
g(\theta, \tilde{P}) & =\sum_{H} \tilde{P}(H) \log (\operatorname{Pr}(D, H \mid \theta) / \tilde{P}(H)) \\
& =E_{\tilde{P}} \log \operatorname{Pr}(D, H \mid \theta)-\log \tilde{P}(H)
\end{aligned}
$$

- Alternate between
- holding θ fixed and optimizing \tilde{P}
- holding \tilde{P} fixed and optimizing θ
- g has same local and global optima as $\operatorname{Pr}(D \mid \theta)$

EM for Bayesian Networks

- D: observable variables
- H: values of hidden variables in each case
- Assume structure is known
- Goal: maximum likelihood estimation of CPTs
- Initialize CPTs to anything (with no 0's)
- Fill in the data set with distribution over values for hidden vars
- Estimate CPTs using expected counts

Filling in the data

- Distribution over H factors over the M data cases

$$
\begin{aligned}
\tilde{t+1}(H) & =\operatorname{Pr}\left(H \mid D, \theta_{t}\right) \\
& =\operatorname{Pr}\left(H^{m} \mid D^{m}, \theta_{t}\right)
\end{aligned}
$$

- We really just need to compute a distribution over each individual hidden variable
- Each factor is a call to Bayes net inference

EM for BN: Simple Case

D_{1}	D_{2}	..	D_{n}
1	$\operatorname{Pr}\left(H^{m} \mid D^{m}, \theta_{1}\right)$		
0	1	0	.9
0	1	0	.2
0	0	1	.1
1	0	1	.6
1	1	1	.2
1	1	1	.5
0	1	0	.3
0	0	0	.7
1	1	0	.2

Bayes net inference

EM for BN: Worked Example

A	B	$\#$	$\operatorname{Pr}\left(H^{m} \mid D^{m}, \theta_{0}\right)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

Iteration 1: Fill in data

$\operatorname{Pr}(H)=0.4$
$\operatorname{Pr}(A \mid H)=0.55$
$\operatorname{Pr}(A \mid \neg H)=0.61$
$\operatorname{Pr}(B \mid H)=0.43$
$\operatorname{Pr}(B \mid \neg H)=0.52$

Iteration 2: Fill in Data

A	B	$\#$	$\operatorname{Pr}\left(H^{m} \mid D^{m}, \theta_{1}\right)$
0	0	6	.52
0	1	1	.39
1	0	1	.39
1	1	4	.28

$\operatorname{Pr}(H)=0.42$
$\operatorname{Pr}(A \mid H)=0.35$
$\operatorname{Pr}(A \mid \neg H)=0.46$
$\operatorname{Pr}(B \mid H)=0.34$
$\operatorname{Pr}(B \mid \neg H)=0.47$

A	B	$\#$	$\operatorname{Pr}\left(H^{m} \mid D^{m}, \theta_{1}\right)$
0	0	6	.52
0	1	1	.39
1	0	1	.28
1	1	4	.28

Increasing Log Likelihood

EM in BN issues

- With multiple hidden nodes, take advantage of conditional independencies
- Lots of tricks to speed up computation of expected counts
- If structure is unknown, add search operators to add and delete hidden nodes
- There are clever ways of search with unknown structure and hidden nodes

