6.825 Techniques in Artificial Intelligence

Decision Making under Uncertainty

- How to make one decision in the face of uncertainty
- In a deterministic problem, making one decision is easy
- Planning is hard because we considered long sequences of actions
- Given uncertainty, even making one decision is difficult

Decision Theory

- A calculus for decision-making under uncertainty
- Set of primitive outcomes
- Preferences on primitive outcomes: $A \succ B$
- Subjective degrees of belief (probabilities)
- Lotteries: uncertain outcomes

With probability p, outcome A occurs; with probability 1 - p; outcome B occurs.

A short survey

1. Which alternative would you prefer:
A. A sure gain of $\$ 240$
B. A 25% chance of winning $\$ 1000$ and a 75% chance of winning nothing

- 2. Which alternative would you prefer:
- C. A sure loss of $\$ 750$
- D. A 75% chance of losing $\$ 1000$ and a 25% chance of losing nothing
- 3. How much would you pay to play the following game: We flip a coin. If it comes up heads, I'll pay you $\$ 2$. If it comes up tails, we'll flip again, and if it comes up heads, I'll pay you $\$ 4$. If it comes up tails, we'll flip again, and if it comes up heads, I'll pay you $\$ 8$. And so on, out to infinity.

Axioms of Decision Theory

If you accept these conditions on your preferences, then decision theory should apply to you!

- Orderability: $A \succ B$ or $B \succ A$ or $A \sqcap B$
- Transitivity: If $A \succ B$ and $B \succ C$ then $A \succ C$
- Continuity: If $A \succ B \succ C$ then there exists p such that $L_{1} \square L_{2}$

More Axioms of Decision Theory

- Substitutability: If $A \succ B$, then $L_{1} \succ L_{2}$

- Monotonicity: If $A \succ B$ and $\mathrm{p}>\mathrm{q}$, then $L_{1} \succ L_{2}$

Last Axiom of Decision Theory

- Decomposibility: $L_{1} \square L_{2}$

Main Theorem

If preferences satisfy these six assumptions, then there exists U (a real valued function) such that:

- If $A \succ B$, then $\mathrm{U}(\mathrm{A})>\mathrm{U}(\mathrm{B})$
- If $A \sqcap B$, then $\mathrm{U}(\mathrm{A})=\mathrm{U}(\mathrm{B})$

Utility of a lottery $=$ expected utility of the outcomes

$$
U(L)=p \cdot U(A)+(1 \square p) \cdot U(B)
$$

Risk neutrality

$$
\begin{aligned}
& -U(B)=.25 U(\$ 1000)+.75 U(\$ 0)=U(\$ 250) \\
& -U(A)=U(\$ 240) \quad \begin{array}{c}
\text { linear utility function } \\
\text { risk neutral }
\end{array}
\end{aligned}
$$

Survey Question 2

Which alternative would you prefer:

- C. A sure loss of $\$ 750$
- D. A 75% chance of losing $\$ 1000$ and a 25% chance of losing nothing

91% prefer option D to option C

- $U(D)=.75 U(-\$ 1000)+.25 U(\$ 0)$
- $U(C)=U(-\$ 750)$
- $\mathrm{U}(\mathrm{D})>\mathrm{U}(\mathrm{C})$

Human irrationality

Most people prefer A in question 1 and D in question 2.

Buying a Used Car

- Costs $\$ 1000$
- Can sell it for $\$ 1100, \$ 100$ profit
- Every car is a lemon or a peach
- 20% are lemons
- Costs $\$ 40$ to repair a peach, $\$ 200$ to repair a lemon
- Risk neutral

Buying a Used Car

- Costs $\$ 1000$
- Can sell it for $\$ 1100, \$ 100$ profit
- Every car is a lemon or a peach
- 20% are lemons
- Costs $\$ 40$ to repair a peach, $\$ 200$ to repair a lemon
- Risk neutral

Expected Value of Perfect Info

How much should you pay for information of what type of car it is (before you buy it)?

- Reverse the order of the chance and action nodes. The chance node represents uncertainty on what the information will be, once we get it.

Expected Value of Perfect Info

How much should you pay for information of what type of car it is (before you take it to be repaired)?

- Reverse the order of the chance and action nodes. The chance node represents uncertainty on what the information will be, once we get it.
- C is cost you have to pay for information

Guarantee?

- Costs $\$ 60$
- Covers 50% of repair costs
- If repairs > \$100, covers them all

Inspection?

We can have the car inspected for $\$ 9$
P("pass" | peach) $=0.9 \mathrm{P}($ "fail" \mid peach $)=0.1$
$P($ "pass" | lemon) $=0.4 \quad P($ "fail" | lemon $)=0.6$
P("pass") =
P("pass" | lemon)P(lemon) + P("pass" | peach)P(peach)
$P\left(\right.$ "pass") $=0.4^{*} 0.2+0.9 * 0.8=0.8$
$P($ "fail") $=0.2$
P(lemon | "pass") = P("pass" | lemon) P(lemon)/P("pass")
$P($ lemon | "pass") $=0.4$ * $(0.2 / 0.8)=0.1$
$\mathrm{P}($ lemon | "fail") $=\mathrm{P}($ "fail" | lemon) $\mathrm{P}($ lemon $) / \mathrm{P}($ "fail")
$P($ lemon \mid "fail" $)=0.6 *(0.2 / 0.2)=0.6$

Recitation Problem

Let's consider one last scenario in the purchase of used cars. We are going to have the car inspected, and then use the result of the inspection to decide if we will:

- buy the car without a guarantee
- buy the car with a guarantee
- not buy the car

Calculate the decision tree for this scenario. Use all the costs and probabilities from the previous scenarios. What is the expected value? Is it better than just buying the car (\$28)?

Another Recitation Problem

Is it ever useful (in the sense of resulting in higher utility) to pay for information, but take the same action no matter what information you get?

